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Abstract: The aspirations and achievements of research and applications in knowledge-based
systems are reviewed and placed in the context of the evolution of information technology, and
our understanding of human expertise and knowledge processes. Future developments are seen
as a continuation of a long-term process of operationalizing the rational stance to human
knowledge processes adopted in the enlightenment, involving further diffusion of artificial
intelligence technologies into mainstream computer applications, and incorporation of deeper
models of human psychological and social processes.

1 Introduction

This is the fifteenth year of the KAW meetings. On the cusp of a new millennium it is fitting to
look back at what has been achieved and to look forward to the challenges and opportunities that
await. There have been 30 KAW, EKAW and PKAW/JKAW/AKAW meetings prior to
PKAW?’2000 at which over 1,000 papers have been presented and published. Why did we start,
what has been achieved, and have we satisfied the original aspirations?

2 Al and ES as Information Technologies

One of the major areas of activity of the Knowledge Science Institute has been tracking the
knowledge economy, in particular, modeling and forecasting the evolution of information
technology (Gaines and Shaw, 1986; Gaines, 1991b). This has involved projects such as setting
the Japanese fifth and sixth generation projects within a historic context (Gaines, 1984; Gaines,
1986), and modeling the convergence of computer and communications technologies in the
information highway (Gaines, 1998). This article takes a similar approach to Al, ES and KA,
analyzing the expectations and achievements, setting them within the general evolution of
information technology, and concluding with an analysis of recent developments in the
understanding of human expertise and knowledge processes.

2.1 Expectations of AI/ES in the 1980’s

John Boose and I founded the KAW series in 1986 at the peak of the artificial intelligence boom
in the context of the industrial acceptance of an expert systems ‘breakthrough.” IJCAI’85 in Los
Angeles had attracted over 7,500 participants and had the atmosphere of a rock concert with
thousands of participants avid to attend presentations in theatres that could seat 500 or less. The
exhibition was like a major technology trade show with lavish stands demonstrating Al tools
from innovative companies and tables sagging under the weight of a burgeoning Al literature.
KAW’86 was intended to be a workshop on knowledge acquisition for some 40 specialists, but
some 120 papers were submitted and we had over 400 requests to attend.

Those were heady days after the publicity for the Japanese ‘fifth generation’ project commencing
in 1982 (Moto-oka, 1982; Gaines, 1984), with massive projections for the growth of revenues
from the ‘Al Industry’ as shown in Figure 1.



Market Area 1981 | 1982 | 1983 | 1984| 1985| 1986( 1987 1988 1989 1990
Expert Systems 4 9 17 38 74 145 245 385 570 810
Natural Language 5 8 18 40 59 125 210 320 465 650
Visual Recognition 10 22 51 116 168 260 370 500 660 840
Voice Recognition 5 7 11 20 33 55 85 140 200 270
Al Languages 3 5 8 12 21 35 45 65 80 105
Al Computers 28 56 103 217 364 510 710 970| 1250f 1570
Government Contracts 20 30 40 50 95 150 150 155 175 200

Total 55 107 208 443 7191 1130| 1665| 2380 3225 4245

Figure 1 Projection of AI Market in 1985

The received wisdom of the early 1980°s was captured by Hayes-Roth (1984) in a workshop on

Al Applications for Business in May 1983:-
“For the past 15 years, applied work in artificial intelligence has focused increasingly on the use of
knowledge to build ‘expert systems.’ These systems achieve levels of performance in complex tasks that
equal or even exceed that of human experts. Because they incorporate much human knowledge, these
systems are called knowledge-based expert systems or, simply, knowledge systems...The industrialization of
knowledge engineering began in 1981 with the formation of two commercial spin-offs from the Stanford
university Heuristic Programming Project...Teknowledge focuses on industrial and commercial uses of
knowledge engineering. Sales this year will be $3 million to $6 million.”

Hayes-Roth also characterized situations that instigate knowledge engineering initiatives:-

1 The organization requires more skilled people than it can recruit or retain.

2 Problems arise that require almost innumerable possibilities to be considered.

3 Job excellence requires a scope of knowledge exceeding reasonable demands on human training and continuing
education.

4 Problem solving requires several people because no single person has the needed expertise.

5 The company’s inability to apply its existing knowledge effectively now causes management to work around
basic problems.

This positive stance to AI/ES applications in the 1980°s was a major change from the 1970’s
when the initial optimism about major advances in, and applications for, artificial intelligence
had been undermined by a series of negative reports by influential contributors to the field such
as: Bar Hillel’s (1964) on the possibility of machine translation; Pierce’s (1969) on the
possibility of speech recognition; and Weizenbaum’s (1976) on the possibility of artificial
intelligence. In addition there were highly critical appraisals from influential outsiders such
Dreyfus (1972) and Lighthill (1973), with the report of the latter having had a highly negative
impact on the funding of Al research world-wide (Fleck, 1982). As shown by the data above, in
the mid-1980’s there was a strong feeling based on industrial acceptance of expert systems that
the critics had been proved wrong and that artificial intelligence research had been successful in
creating a major new industry.

2.2 State of AIIES in the 1990’s

From the current perspective, some 15 years later, how have the expectations of AI/ES been
fulfilled? The attendance at AAAI/IJCAI conferences has dwindled and the exhibit floors have
virtually disappeared. The market projections for an Al industry in Figure 1 do not seem to have
materialized. Teknowledge still exists with some 50 employees and revenue growth to $12M a
year, which barely keeps pace with inflation. Neuron Data has become Blaze Software largely
concerned with supplying technology for personalizing web sites. The expert systems shell FAQ
at CMU (ftp://ftp.cs.cmu.edu/user/ai/pubs/fags/expert/expert_1.faq) lists over 60 products but
has not been updated since 1997 and, when one traces the companies listed today, most do not
exist and those that do have generally migrated to the ecommerce industry.



Figure 2 characterizes the growth of the literature in Al and ES through to 1999 by plotting the
number of books in the library catalog of a world-class university with a strong Al research area.
The number of books with ‘expert systems’ in the title shows a standard sigmoidal learning
curve (Crane, 1972), with the peak growth during the 1986 to 1992 period and publication
waning thereafter. The number of books with ‘artificial intelligence’ in the title is still growing
and it is difficult to accurately characterize the peak growth period but the data so far is
consistent with that being from 1986 through to 1998.
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Figure 2 Growth in number of AI and ES books held in a library

It might be reasonable to conclude from this that there was false euphoria in the 1980’s and that
critical appraisals from the previous decades had been correct. However, the story is by no
means that simple and the following sections provide perspectives and examples that elucidate
what has happened and provide a basis for predicting and planning future developments.

2.3 Ongoing ES Applications and AI Achievements

One answer to the conundrum is that, while the AI/ES industry may not have grown as much as
expected, expert systems are still being developed and applied that do satisfy the original
aspirations. Gensym was founded in 1986 and had revenues of $36M from a range of Al-related
products and services including its G2 expert system shell. Its web site highlights some 25
corporate success stories in ES deployment (http://www.gensym.com/). The continuing health of
the applications track at the British Computer Society annual conference on Expert Systems and
of the Innovative Applications of Al track at the AAAI annual conference support this position.

More significantly, papers are being published in the professional literatures of the application
areas that tell of the success of ES applications exactly as predicted by Hayes-Roth. For example,
the April and July 2000 issues of InTech Magazine published by the ISA, the Instrumentation,
Systems and Automation Society, has a two-part paper from Eli Lilly on the deployment of an
expert system in its fermentation plant. The evaluation in 2000 is in wording that corresponds
well to Hayes-Roth’s predictions in 1984:-

Within a few weeks, Phil was satisfied that the expert system reliably came to the same conclusions he
would have by looking at the same data (i.e., the system did what it was purported to do, which was an
application and validation objective). The expert system then took over this part of Phil’s job, freeing up 40
hours per month of his time for other work. Of course, whenever G2 detected a problem fermentor, or one
it was unsure of, Phil, or an assistant, would be immediately paged. This application became affectionately
known as “Phil in a box.” Phil retired from Lilly in 1993 when the company offered an early retirement
program. In fact, many of the experienced fermentation personnel at this plant, as well as several at other
Lilly plants, also retired. (Alford, Cairney, Higgs, Honsowetz, Huynh, Jines, Keates and Skelton, 2000)
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There have also been major advances in the theoretical foundations of artificial intelligence,
notably major improvements in the bounds on rational processes of deductive and inductive
reasoning such as those originally formulated by Godel (Davis, 1965), Chomsky (1956) and
Gold (1967). The theory of computational complexity (Garey and Johnson, 1979) when applied
to formal knowledge representation languages shows that inference in even moderately rich
representations is inherently worst-case intractable (Nebel, 1990), and there is now a
comprehensive taxonomy of representation capabilities and their complexity implications
(Donini, Lenzerini, Nardi and Nutt, 1997). In machine learning, complexity measures have been
at the heart of inductive algorithms from the early days (Blum and Blum, 1975) and the
intractability of an exhaustive search approach to fitting a model to data is an intrinsic constraint
for any reasonable class of models (Gaines, 1977). Algorithmic learning theory has become a
well-founded discipline encompassing such results (Natarajan, 1991), and the major theoretical
advances have been in formally defining and developing approximately correct modeling
approaches that are tractable (Valiant, 1974), and in demonstrating how meaningful learning can
take place through socio-cultural processes (Kirby, 1999).

2.4 Assimilation of AI/ES Technologies in Mainstream Data Processing

However, a small but reasonably successful industry only captures part of the story. From the
earliest days of Al pioneers such as Donald Michie have noted that an intrinsic feature of the
field is that problems are posed such that all those involved accept that any solution must involve
‘artificial intelligence’ but, when the solution is developed and the basis for it is clear, the
resultant technology is assimilated into standard information processing and no longer regarded
as ‘intelligent’ in any deep sense. When the magician shows you how the trick was done the
‘magic’ vanishes. Much of what has been developed through AI/ES research has diffused in this
way into routine information technology, the Michie effect.

One example of the Michie effect is the assimilation of expert systems technology into
mainstream database technologies. Blaze Software supports the ‘business rules’ layer in the
IBM/Microsoft three-layer client server enterprise model through use of the powerful knowledge
modeling tools that were developed for the expert system shell NEXPERT. Teknowledge’s
patents relating to such applications are being contested in a lawsuit by SAP, the world’s third-
largest independent software supplier with revenues of over $5B/year employing over 21,700
people in more than 50 countries in which SAP denies violating Teknowledge patents.

There are many books, manuals and white papers now available on business rules and their
development. Date, the author of the standard text on relational databases, has one entitled What
Not How: The Business Rules Approach to Application Development (Date, 2000). Seiler, the
founder of Rule Machines Corporation, has a nice paper on managing business rules which
shows their role within an enterprise architecture (Figure 3) and emphasizes that they are not
expert systems or database triggers but rather a way in which end-user management can specify
activities in terms of “business speak” (Seiler, 1999). In KA terms, the business rules are
intended to support knowledge modeling by end-users, a major objective of one line of research
at the KAW workshops.

The middle layer in Figure 3 can range from the operationalization of procedures manuals,
internal to the company or external such as the tax or building codes, to the incorporation of
sales, marketing and financial expertise that is not normally captured in procedures or training
manuals. The back-end databases are usually pre-existing relational systems and the client user
interface increasingly uses web browsers with HTML as the GUI programming language. The
middle layer allows rich ontological models to be incorporated in terms comprehensible to
managerial end users such that they can incorporate procedures based on their knowledge and
requirements with the minimal of mediation by programmers. An early experiment in encoding
an oil company’s procedure manual in this way was reported by Kremer (1991) at KAW’91, and
noted that the use of rules with exceptions was the most natural way of encoding the constraints
in the manual.
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Figure 3 Business rules within n-tier application architecture (Seiler, 1999)

A related example of the Michie effect is the ongoing assimilation of Al concepts and
frameworks into the mainstream data processing industry in the work of the IEEE Standard
Upper Ontology (SUO) study group developing a standard for high-level database integration
(http://Itsc.ieee.org/suo/) which draws heavily on the people and research of the KIF and CG
communities. The business rules and standard ontology technologies can all be seen as the
development of support for knowledge management within organizations, the “management of
organizational knowledge for creating business value and competitive advantage” (Tiwana,
2000). The primary Japanese literature on knowledge management emphasizes the knowledge
acquisition processes involved in converting ‘tacit knowledge’ into overt operational knowledge
(Nonaka and Takeuchi, 1995; Von Krogh, Ichijo and Nonaka, 2000). The issues of supporting
such conversion are strongly reminiscent of those of developing expert systems, and knowledge
management web sites link into the KA literature (e.g., http://www.km-forum.org/papers.htm).

Another instance of the Michie effect has been the adoption of rule induction techniques in the
scientific community to analyze databases with the results significant for, and reported in, the
relevant scientific literature, for example, in research on the carcinogenetic properties of
chemical compounds (Lee, Buchanan and Rosenkrantz, 1996). Langley (2000) provides a wide
range of examples such Al computational support of scientific discovery. KA tools have also
proved useful in helping a research community develop a consensual and comprehensible
framework for its research program (Gaines and Shaw, 1994).

A different area of assimilation of Al techniques into mainstream data processing is the routine
use of neural networks in conjunction with statistical techniques to model complex datasets. For
example, neural networks are being used routinely in geography to develop nonlinear models of
ecological (Lek and Guégan, 2000) and climatic data (Smolka and Volkheimer, 2000).

Knowledge discovery from databases (KDD, Fayyad, 1996) has clear roots in machine learning,
but combines statistical tools, ontology and rule induction with graphic human interaction to
provide a new hybrid technology subsuming and merging the other techniques within its own
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conceptual framework. As KDD techniques becomes clearly defined and classified they will in
turn merge with on-line analytical processing (OLAP, Hackney, 1997) techniques for extracting
management information from data warehouses, and their Al roots will be primarily of historic
interest. The Michie effect is pervasive and inevitable, but is a sign of achievement not failure.

2.5 Advances in Information Technology Solving AI Problems by Other Means

In projecting the future for artificial intelligence research it is also important to recognize that
parallel advances in information technology have provided alternative solutions to some aspects
of what had been regarded as ‘Al problems.” For example, Hayes-Roth’s list in Section 2.1
emphasizes the role of expert systems “when organization requires more skilled people than it
can recruit or retain,” and a classical approach to such labor shortages is through training. E-
learning has also developed extensively during the same period as expert systems and there is
now a major industry supporting ‘corporate universities’ (Meister, 1998), and providing on-the-
job training and just-in-time learning (Wills, 1998). For example, the Learndlife division of
SAIC, a $10B/year company, provides modules targeted on the full range of emergency services,
law enforcement, fire service and search and rescue (http://www.Train4life.com/), and Motorola
University offers courses in a wide range of core skills areas where recruitment is problematic
such as software engineering (http://mu.motorola.com/).

Pace Bar-Hillel, automatic translation is a freely available service on the web. Typing
Wiggenstein’s famous aphorism, “Wovon man nicht sprechen kann, dariber muf3 man
schweigen” into Altavista (http://babelfish.altavista.digital.com/translate.dyn), one gets back
“about which one cannot speak, over it one must be silent”, which captures the essence quite
nicely. Pace Pierce, speech recognition has also become a routine office product from major
corporations such as IBM and Fujitsu, again without significant relations to Al developments.

Some of the most dramatic examples of ‘machine intelligence’ in recent years, arousing massive
public interest, have been the Kasparov versus Deep Blue chess games. In 1996, Kasparov won
the series but it was clear that the computer program was playing chess effectively at
grandmaster level (Newborn, 1997). In the 1997 re-match Deep Blue won the series and, as
Schaeffer and Platt (1997) note in regard to game 2:

“If a game such as this were ever used for a Turing Test, few would peg the computer as playing White. In

fact, most grandmasters would have been thrilled to have played such a nice a game as White, regardless

of who was playing the Black pieces.”

Chess playing has been regarded as a benchmark ‘Al problem’ but the number-crunching search
strategy of Deep Blue based on special chess-oriented hardware was not an Al or ES approach,
and provides little insight into human chess-playing strategies.

A major advance in information technology that was not even on the horizon at KAW’86 was the
development of the World Wide Web. Berners-Lee’s (1989) proposal to CERN for managing its
documents effectively was still three years away. His first paper about the web was relegated to a
poster at Hypertext’93, and it was not until the mid-90’s when Andreessen had developed what
became the Mosaic browser and eventually Netscape and Internet Explorer that the web
exploded into a ubiquitous and revolutionary technology. The web is important not only because
it diverted effort from Al activities to communication technologies, but also because it provided
alternative solutions to the problem of accessing expertise. The significance of discourse in the
human communities collaborating through the net has been underestimated in the stress on
‘artificial’ intelligence in computer research. Net email and web services provide access to a far
more powerful ‘expert system’ of human agents and their products than any currently
conceivable through Al techniques.

Structured search strategies of digitally represented scientific literature have also been used in
the automated development of new scientific discoveries in a way that addresses an Al problem
without using Al techniques. For example, Swanson (1990) has reported on the success of a
methodology that searches for implications of the form A implies B, and B implies C, in two
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papers from different literatures neither of which generally cites the other. The connection that A
implies C has been used to derive significant new results in some medical areas.

2.6 Convergence Between Web and Al Technologies

Developing search engines for the web has involved the use of text analysis techniques that draw
primarily on information retrieval technologies rather than Al but result, in their latest versions
such as Google (http://www.google.com/), in such precise access to a massive corpus of
knowledge that they should certainly count as an advance in knowledge acquisition techniques.

Web browsers have, as in many other application areas, also provided a convenient interface to
Al ES and KA applications using HTML to program their user interfaces in a standard, and
platform-independent, manner. Ontology editors for a range of KR and KA systems have been
made available through the web, for example, Ontolingua (Farquhar, Fikes and Rice, 1996),
Protégé-II (Rothenfluh, Gennari, Eriksson, Puerta, Tu and Musen, 1996), VITAL (Motta, Stutt,
Zdrahal, O'Hara and Shadbolt, 1996), and others, as have personal construct psychology
approaches such as WebGrid-II (Gaines and Shaw, 1997).

There is also an interesting convergence between web and Al techniques in the W3 ‘Semantic

Web’ framework and its implementation using the Resource Description Framework (RDF). As

Tim Berners-Lee notes:
The Web was designed as an information space, with the goal that it should be useful not only for human-
human communication, but also that machines would be able to participate and help. One of the major
obstacles to this has been the fact that most information on the Web is designed for human consumption,
and even if it was derived from a database with well defined meanings (in at least some terms) for its
columns, that the structure of the data is not evident to a robot browsing the web. Leaving aside the
artificial intelligence problem of training machines to behave like people, the Semantic Web approach
instead develops languages for expressing information in a machine processable form.
(http://www.w3.org/Designlssues/Semantic.html)

The KA community has established an international working group to develop technologies for
the semantic web (http://www.semanticweb.org/), and launched a Semantic Web journal in the
Electronic Transactions on Artificial Intelligence (ETAI, http://www.etaij.org/seweb/) series.

3 Evolution of Information Technology

Information technology based on the stored-program digital computer has seen a rate of growth
in the past fifty years that is unsurpassed by any other technology. The vacuum-tube based flip-
flop memory cell enabled the development of the first generation of computers in the 1947-49
period. Reliability and performance were increased with the advent of solid-state transistors in
1959, and the number of devices on a chip increasingly exponentially since then to some billion
currently has induced a similar improvement in computer performance. However, electronic
devices and computers could not have been developed over nine orders of magnitude
performance improvement without the use of computers themselves to support the design and
fabrication of circuits and computers. This is one example of a positive feedback loop within the
evolution of computers through which the computer industry has achieved a learning curve that
is unique in its sustained exponential growth. Each advance in computer technology has
supported further advances in computer technology.

3.1 Positive Feedback and the Tiered Learning Curves of Information Technology

Such positive feedback is known to give rise to emergent developments in biology (Ulanowicz,
1991) whereby systems exhibit major new phenomena in their behavior. The history of
computing shows the emergence of major new industries concerned with activities that depend
upon, and support, the basic circuit development but which are qualitatively different in their
conceptual frameworks and applications impacts from that development. For example,
programming has led to a software industry, human-computer interaction has led to an
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interactive applications industry, document representation has led to a desktop publishing
industry, and so on.

Each of these emergent areas of computing has had its own learning curve (Linstone and Sahal,
1976), and the growth of information systems technology overall may be seen as the cumulative
impact of a tiered succession of learning curves, each triggered by advances at lower levels and
each supporting further advances at lower levels and the eventual triggering of new advances at
higher levels (Gaines, 1991b). It has also been noted in many disciplines that the qualitative
phenomena during the growth of the learning curve vary from stage to stage (Crane, 1972; De
Mey, 1982; Gaines and Shaw, 1986).

The era before the learning curve takes off, when too little is known for planned progress, is that
of the inventor having very little chance of success but continuing a search based on intuition and
faith. Sooner or later some inventor makes a breakthrough and very rapidly his or her work is
replicated at research institutions world wide. The experience gained in this way leads to
empirical design rules with little foundation except previous successes and failures. However, as
enough empirical experience is gained it becomes possible to model the basis of success and
failure and develop theories. This transition from empiricism to theory corresponds to the
maximum slope of the logistic learning curve. The theoretical models make it possible to
automate data gathering, analysis and associated manufacturing processes. Once automaton has
been put in place, effort can focus on cost reduction and quality improvements in what has
become a mature technology.

The dependent technologies themselves develop along their own learning curves and come to
support their own dependents. Figure 4 shows a tiered succession of learning curves for
information technologies in which a breakthrough in one technology is triggered by a supporting
technology as it moves from its research to its empirical stage. Also shown are trajectories
indicating the eras of invention, research, product innovation, long-life product lines, low-cost
products, and throw-away products for different forms of information technology.

The breakthrough in digital electronics leading to the zeroth generation is placed at 1940 about
the time of the Atanasoff and Berry experiments with tube-based digital calculations. The first
breakthrough generating a computing infrastructure was Mauchly’s introduction of the general-
purpose stored program computer architecture which led to the transition from the ENIAC to
the EDVAC designs. The next level of breakthrough was in software to bridge the gap between
machine and task through the development of problem-orientated languages. The next level of
breakthrough was in continuous interaction becoming a significant possibility as the mean time
between failures of computers began to be hours rather than minutes in the early 1960s. These
lower levels of electronics, computer architecture, software and human-computer and computer-
computer interaction define the domain of classical computer science.

3.2 Emergence of Knowledge Science

The four learning curves of the tier at the top of Figure 4, of knowledge representation,
acquisition, autonomous agents and socially structured systems constitute the domain of
knowledge science where the convergence between artificial intelligence, expert systems,
knowledge acquisition, databases, the web, and so on, is situated. From an Al perspective, the
knowledge level breakthrough corresponds to the development of DENDRAL (Buchanan,
Duffield and Robertson, 1971) for inferring chemical structures from mass-spectrometry data
and MYCIN (Shortliffe, 1976) for the diagnosis of microbial infections in the early 1970s.
However, it is important to note that the knowledge level also encompasses the digitization of the
classical knowledge representation media through which typographic text, diagrams, pictures,
sounds and videos became storable, indexable and retrievable through digital computers. Thus
the breakthroughs in the 1970’s represented by the introduction of raster graphics, word-
processing software, MEDLINE, SGML and PostScript, are also critical events for the
knowledge level learning curve.
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Figure 4 The infrastructure of information technology

Similarly, at the acquisition level, the AI breakthroughs may be seen as AM learning
mathematics by discovery (Davis and Lenat, 1982) and the successful inductive inference of
expert rules for plant disease diagnosis (Michalski and Chilausky, 1980). However,
developments in scanning, optical character recognition, interactive graphics and page makeup
systems were also significant advances in the digitization of knowledge in machine processable
form. At all levels, research in robotics and machine vision has been a major source of
innovation and a driving force for technologies at the upper levels involving some degree of
autonomous behavior and social organization.

Figure 4 provides a context within which to model the assimilation of Al and ES technologies
into standard information processing as discussed in the preceding sections. The deductive and
inductive inferences processes that are seen as core to human rational intelligence, when
modeled in the computer, become data processing capabilities that can be understood as such and
used as computational resources where appropriate in any application. Similarly, the peripheral
perceptual processes when modeled effectively become statistical pattern-recognition techniques
which can again be assimilated as computational resources. The representation of knowledge at a
semantic level through rich ontological structures is a natural extension of data base technology
and has become assimilated as such. In particular, to the extent that the knowledge representation
is natural and comprehensible to people, it becomes assimilated as part of the upper level human-
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computer interface where the objective is to make the programming and use of computers natural
and comprehensible to people.

From this perspective, what could not be assimilated so readily would be systems that achieved
intelligent behavior in incomprehensible ways. For example, if the various experiments in
electro-chemical perceptron-like elements in the 1960’s had produced effective intelligent
systems they might not have been so readily assimilated except as black-box peripherals.
However, the history of Al research to date has been one of achieving successful performance at
some task by some means, and then afterwards deconstructing that achievement to rationalize it
in algorithmic form. Magic has always been transformed into science. One can see this process at
work in research on quantum computing where the underlying mechanism is radically different
from that of current digital computers but where science-based engineering design is being used
to develop fresh approaches to the massive search tasks whose computational complexity
undermines current Al algorithms (Grover, 1996). It is the advances in the understanding of
inference algorithms in relation to knowledge representation schema noted in Section 2.3 that
make it possible to contemplate using such alternative approaches. Both deductive and inductive
inference have become precise computational sciences.

3.3 Knowledge Support Systems

What are the implications of this for the next generation of AI/ES/KA developments? One can
see from Figure 4 that the line of throw-away products now encompasses the entire arena of
classical computing. High-quality computer hardware, compilers, development environments,
and interactive interfaces, are all now ubiquitous consumer products in the developed nations.
Access to raw knowledge through the web comes at low-cost ranging from the willingness to
tolerate advertising to a few hundred dollars a year for professional journals. Knowledge
acquisition tools through professional services such as DIALOG are more expensive, but
potentially low-cost as techniques such as those used in Google are applied to electronic versions
of journals. Autonomous agents are proving their practical worth in robotics (Shen and Norrie,
1998), and research on social structures of agents is changing our theories of knowledge
processes (Kirby, 1999).

In all these areas the integration of mature Al technologies such as ontology and ripple-down
rules editors and inference engines can be applied to provide improved performance embodying
human knowledge and expertise. For example, the selective dissemination of information (SDI)
has become critical as the volume of available digitized information has increased beyond the
bounds of individual utility. Current methods based on keyword searches are crude in their
selectivity and difficult to customize effectively. The selection of an appropriate ontology from a
library and its development through an individualized sub-ontology incorporating rules with
exceptions to manage the retrieval process could be the basis of a next generation of much more
effective SDI systems that are also active awareness agents drawing attention to emerging
information and trends.

Such developments would be consistent with the notion of knowledge support systems
introduced at KAW’87 as a framework for integrating ES, KA and multimedia knowledge
sources (Shaw and Gaines, 1987). This was extended at KAW’89 to encompass a wide range of
knowledge support systems shown in Figure 5, a diagram which establishes reasonable targets
still valid today for the assimilation of a variety of information technologies, including Al, ES
and KA, into highly interactive computational systems that amplify human expertise. It provides
the content and human dimension to current developments of distributed grid architectures
(Foster and Kesselman, 1999).
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It is interesting to go back even further in time to Shortliffe and Clancey’s (1984) list of
desiderata in the early 1980’s for the second decade of ES research. Users surveyed said the
systems should:

¢ Be able to explain their decisions to users

*  Be portable and flexible so that users can access them at any time and place

e Display an understanding of its own knowledge

¢ Improve cost-efficiency

e Automatically learn new information when interacting with experts

e Display common sense

and system developers said that research should focus on:
*  Psychological studies providing new insights into simulating expert decision-making

e Techniques for representing and using causal and mechanistic relationships allowing reasoning from first
principles
*  Methods for acquiring expert knowledge, encoding it and checking it for consistency and completeness

11



*  Explanation facilities guided by understanding of how people explain things to one another and adapt to the
knowledge and experience of the person requesting advice

e New machine architectures supporting high-performance decision-making programs

e  Melding of symbolic techniques drawn from artificial intelligence and analytic techniques of statistics, pattern
recognition and decision theory

e Novel ways in which personal computing and graphics might improve the acceptability and cost-effectiveness
of systems aiding decision-making tasks.

We are now entering the fourth decade of ES development, but this list is as valid today as it was
nearly 20 years ago.

3.4 Trends and Limitations

Returning to Figure 4, the line of invention leaves the existing framework, giving no indication
of the areas in which breakthroughs in the current era might be expected. I have considered a
third major level, of memetics, reflecting the autonomy of ideas within Popper’s World 3
(Gaines, 1978), but do not yet have confidence in projections at that level.

The most effective technological forecasting techniques are those that identify a social need and
analyze the state-of-the-art in the technical pre-conditions for it to be satisfied (Gilfillan, 1937).
Most of our social needs today stem from the continued environmental impact of exponentially
increasing population and the ensuing problems of famine, disease and social unrest (Meadows,
Meadows and Randers, 1992). Alain Rappaport (personal communication) has drawn my
attention to the migration of Al scientists into genetic engineering projects, and that is obviously
one area focused on addressing current needs related to health and food. Genetic technology has
a tiered structure of learning curves of its own commencing with the breakthrough in molecular
biology through Watson and Crick’s discovery of the double helix model of DNA in 1953
(Gaines and Shaw, 1986). We would expect convergence of computing and genetic technology
on the basis of their common foundations in information encoding whether in silicon or DNA.

Perhaps the most significant conclusion to draw from Figure 4, however, is that knowledge
representation and acquisition, conceived as digital computer technologies, are in the late stages
of their learning curves. This may be surprising because, if one looks back to the aspirations of
expert systems research in the 1980’s, there is still a major gap in information technologies
despite the assimilation of Al and ES techniques, and that is in the emulation of human expertise
and its transfer from human experts to the computer. It is not that there has been no progress. The
examples in Section 2.3 and the ongoing application of, for example, ripple-down rule
techniques to building effective expert systems demonstrate that the emulation and transfer of
human expertise is feasible in some domains (Compton, Edwards, Kang, Lazarus, Malor, Preston
and Srinivasan, 1992). However, the large-scale emulation and transfer that fired the industrial
enthusiasm of the 1980’s has failed to materialize. The next section provides a framework for
understanding the constraints to achieving such emulation and transfer of human expertise within
existing computing frameworks.

4 The Nature of Expertise and Knowledge

When we moved to Canada in 1982 one of my first tasks was to return to the UK to act as the
neutral chair of a Science Councils workshop considering funding of UK expert systems research
in the light of the Japanese fifth generation initiative. My recollection of that meeting is of
eminent cognitive psychologists explaining to enthusiastic computer scientists why modeling
human expertise was unlikely to be effective or useful. Dreyfus and Dreyfus (1986) have
presented the arguments very clearly, and the KAW meetings have from the beginning had
cognitive psychology tracks addressing the fundamental issues. In particular, Bill Clancey (1997)
has through the KAW meetings and a wide range of publications deconstructed simplistic
notions of the nature and transferability of human expertise with the credibility of a major
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pioneering contributor to expert systems development. What have we come to know of expertise,
its computer emulation and transfer?

4.1 What is an Expert?
Webster’s dictionary definition of expert as a noun is:

“a person who has special skill or knowledge in some particular field; specialist; authority,”
and as an adjective is:

“possessing special skill or knowledge; trained by practice; skillful or skilled.”

These definitions capture some significant connotations of expertise and it is useful to
deconstruct them carefully.

First the use of the terms “has” and “possessing” gives skill and knowledge connotations of a
substance that may be possessed. This association of expertise with substance can lead to a
perspective that sees that substance as something to be transferred to a computer. It may also
given the impression that to possess that substance is to be an expert.

The first association is misleading in the sense that in many cases the only evidence one has for
possession of something is that an expert is capable of skilled performance in a task. One may
reason that there must be some basis for this performance, and it is a possible metaphor to view
this as possession of a substance. However, the ‘substance’ is an imputed hidden variable and
hypothesizing its existence gives little insight into the nature of expertise. The metaphor may
also be misleading in locating expertise within the expert rather than as a process of interaction
between expert and situation.

The association of skill and knowledge in both definitions is part of this metaphor in implying
that knowledge is the substance underlying skill. Skill is defined as both:

the ability, coming from one’s knowledge, practice, aptitude, etc., to do something well,

and as
competent excellence in performance; expertness; dexterity.

The problem of relating these two definitions of skill, the first causal and the second
phenomenological, involves major ontological, epistemological and psychological issues.

Knowledge is defined as:
acquaintance with facts, truths, or principles, as from study or investigation.

What are facts, truths and principles and how does acquaintance with them lead to competent
excellence in performance? Does skilled behavior indicate the possession of knowledge?

The impression that the possession of skill is adequate to capture the normal usage of the term
expert is also misleading. One would term someone skilled who can perform a task well, but to
term someone expert has connotations going beyond mere skill, of being able to perform well in
difficult situations, of maintaining the performance in changing, unexpected and novel
circumstances. These are the connotations which Schon (1983) emphasizes in his discussion of
“reflective practitioners” who do not attempt to merely preserve their existing capabilities but to
extend them continually in order to match changing circumstances.

The auxiliary terms in the definitions are interesting in suggesting other aspects of expertise. It is
specialist, not a general attribute like intelligence, and hence can be seen as a situated role that a
person can play rather than a general property of that person. Its being associated with authority
suggests that it plays a social role in that others must allow an expert:

the power to determine, adjudicate, or otherwise settle issues or disputes; jurisdiction; the right to control,
command or determine.
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Its association with being trained by practice indicates one, but only one, of the many processes
whereby expertise is acquired.

The problems introduced by attempting to model human action as derived from knowledge have
been extensively discussed in the literatures of philosophy and sociology. Gadamer, in his
critique of Hegel’s theory of knowledge, highlights the fundamental issues underlying the
relation of expertise to knowledge:
For Hegel, it is necessary, of course, that the movement of consciousness, experience should lead to a self-
knowledge that no longer has anything different or alien to itself. For him the perfection of experience is
‘science’, the certainty of itself in knowledge. (Gadamer, 1972)

However, Gadamer argues:

The nature of experience is conceived in terms of that which goes beyond it; for experience can never be
science. It is in absolute antithesis to knowledge and to that kind of instruction that follows from general or
theoretical knowledge. The truth of experience always contains an orientation towards new experience.
That is why a person who is called ‘expert’ has become such not only through experiences, but is also open
to new experiences. The perfection of his experience, the perfect form of what we call ‘expert’, does not
consist in the fact that someone already knows everything and knows better than anyone else. Rather, the
expert person proves to be, on the contrary, someone who is radically undogmatic, who, because of the
many experiences he has had and the knowledge he draws from them is particularly equipped to have new
experiences and learn from them. (Gadamer, 1972)

In the expert systems literature, Clancey has criticized approaches to expert system development

based the assumption that expertise can be captured in overt knowledge, and comes to similar

conclusions:
The new perspective, often called situated cognition, claims that all processes of behaving, including
speech, problem-solving, and physical skills, are generated on the spot, not by mechanical application of
scripts or rules previously stored in the brain. Knowledge can be represented, but it cannot be exhaustively
inventoried by statements of belief or scripts for behaving. Knowledge is a capacity to behave adaptively
within an environment; it cannot be reduced to representations of behavior or the environment. (Clancey,
1989)

He argues that overt representations of knowledge are only partial models of the knowledge
processes underlying human behavior:
A representation is not equivalent to knowledge
A representation of what a person knows is just a model of his or her knowledge, a representation of a
capacity. Knowledge cannot be reduced to (fully captured by) a body of representations. Knowledge
cannot be inventoried.
The meaning of a representation cannot be made explicit
Meaning can be represented, but it cannot be defined once and for all, captured fully by representations.
The meaning of a representation is open, though there are culturally stable representations of meaning
(e.g., word senses).
The context in which a program is used cannot be made explicit
Context can be represented, but the world cannot be objectively and exhaustively described; cultural or
social circumstances cannot be reduced to a set of facts and procedures. (Clancey, 1993)

4.2 What is the Basis of Expertise?

The nature of human capabilities and knowledge have been a major topic studied by
philosophers from the earliest times, and it is not surprising that artificial intelligence research
has not resolved their nature in its comparatively short history. Indeed, any fundamental
resolution would be highly unlikely, and any pragmatic technological resolution would be
expected to have limited application. However, the issues and aspirations will not, and should
not, go away. Minimally, the computer is a powerful tool for operationalizing a theory, allowing
us to simulate its application and consequences, and at the same time testing whether the theory
is sufficiently clearly expressed to have well-defined applications and consequences.
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Much of the current thought on the nature of expertise and knowledge can be seen as stimulated
by the later works of Wittgenstein, in particular, his arguments that the notion of human behavior
“following a rule” is paradoxical:
This was our paradox: no course of action could be determined by a rule, because every course of action
could be made to accord with the rule...’obeying a rule’ is a practice...If I have exhausted the justifications

I have reached bedrock, and my spade is turned. Then I am inclined to say: “This is simply what I do.”
(Wittgenstein, 1953, 201, 202, 217)

Given that the majority of expert systems technology attempts to emulate human expertise
through representation as rules, and that the majority of knowledge acquisition methodologies
are concerned to derive those rules from human behavior, one would expect that attempts to
model human behavior that address Wittgenstein’s arguments might be particularly relevant to
AI/ES. Pierre Bourdieu, the French philosopher and sociologist, has generated a major literature
on human psychology, culture and sociology, that stemmed from just this consideration:

I can say that all my thinking started from this point: how can behaviour be regulated without being the
product of obedience to rules? (Bourdieu, 1990, 65)

The answer to this question from a wide variety of sources is that all human behavior is
generated within a rich background, to use Searle’s (1992) terminology, that is implicit and not
consciously represented, and is constituted through acculturation processes that internalize the
historic development of a particular society or institution.

Bourdieu builds on the previous analyses of Aristotle, Hegel, Nietzsche, Husserl, Schutz,
Wiggenstein, Heidegger and Merleau-Ponty, to provide a very detailed analysis of socially-
embedded human behavior in terms of three major constructs: habitus which is a system of
dispositions extending Aristotle’s analysis of hexis; field which is a network of influences and
power relations extending Lewin’s analysis of behavior within a social field; and symbolic
capital abstracting and generalizing Marx’s analysis of capital formation and Weber’s extension
of it to cultural domains. Bourdieu’s output in books and papers is prolific, ranging from detailed
ethnographic and statistical studies through sociological models of a wide range of institutions to
deep theoretical analyses—a good starting point is the interviews and essay in Bourdieu (1990).

Bourdieu’s model of habitus is particularly important to the modeling of human expertise:

I am talking about dispositions acquired through experience, thus variable from place to place and time to
time. This ‘feel for the game’, as we call it, is what enables an infinite number of ‘moves’ to be made,
adapted to the infinite number of possible situations which no rule, however complex, can foresee.
(Bourdieu, 1990, 65)

Action guided by a ‘feel for the game’ has all the appearances of the rational action that an impartial
observer, endowed with all the necessary information and capable of mastering it rationally, would deduce.
And yet it is not based on reason. (Bourdieu, 1990, 65)

Bourdieu has had no interest in artificial intelligence and little as yet in technology, but Searle
(1992) has used this model of human behavior as founded on an implicit background or habitus
to critique cognitive science and computational analogies of the operation of the human mind,
and it is at the heart of the Dreyfus (1986) critique of expert systems.

What are the implications of an understanding of human behavior in terms of habitus for
research in Al and ES, apart from suggesting that the task of developing expert systems
comparable in their competence to people is a difficult, if not impossible, one? It is, perhaps,
salutary here to reverse the analysis and examine the quality of judgement of experts. In a survey
of studies of the accuracy of human subjective probability judgements, Tversky and Koehler
conclude:
The evidence reported here and elsewhere indicates that both qualitative and quantitative assessments of
uncertainty are not carried out in a logically coherent fashion, and one might be tempted to conclude that
they should not be carried out at all. However, this is not a viable option because, in general, there are no
alternative procedures for assessing uncertainty. (Tversky and Koehler, 1994)
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In the domain of expertise in scientific research, Feyerabend (1975) has argued that there is no
evidence of a rational methodology, and Fortun and Bernstein (1998) have provided a
compelling account of scientific progress as ‘muddling through.’ In Voltaire’s Bastards, Saul
argues:
Among the illusions which have invested our civilization is an absolute belief that the solution to our
problems must be a more determined application of rationally structured expertise. The reality is that our
problems are largely the product of that application. (Saul, 1993, 8)

4.3 The Dynamics of Expertise Formation

How is it that imperfect human capabilities are construed as expertise and that muddling through
is effective? One answer is that human expertise arises in the context of human action as a
pragmatic process of dealing with present contingencies knowing that there will be further
opportunities to deal with the consequences of our actions at a later stage. The decision to treat a
patient in a certain way is an experiment that entails monitoring the consequences with a view to
planning future treatment. Human action takes place in a control loop with imperfect information
at each decision point, and with the unfolding process continually changing the state of play.

In many situations it is more important to act in a way that is not wildly wrong rather than to
compute the optimum action, particularly when available information is inadequate, inaccurate,
expensive to obtain, and so on. It is generally important to know who has the authority to act and
who is accountable for monitoring the consequences, taking follow-up action, and so on. The
giving, or taking, of the authority to be in control in a particular domain demarcates the abstract
role of an ‘expert’ in that domain relative to the social norms of the institution that accepts
ownership of the domain.

A simple analysis of the phenomenon of such assignment of authority in a society of learning
agents shows that actual expertise, in the sense of greater capabilities, arises naturally through
the positive feedback processes involved in proto-experts having greater access to learning
experiences (Gaines, 1988). An extended analysis shows that society can optimize the rate at
which the proto-experts learn without having any understanding of either the underlying of the
domain, the basis of expert performance in it, or the processes of learning involved (Gaines,
1997). The management of expertise formation in a society of learning agents can be highly
successful while being remarkably knowledge-free in all its aspects.

Figure 6 is a diagram from KAW’88 of the processes of expertise formation through a variety of
feedback processes (Gaines, 1989). The central loop showing the client-expert dialog derives
from studies by Hawkins (1983) of industrial experts in mineral exploration, and emphasizes that
the generation of advice is a feedback process of discourse and modeling. The upper and lower
ovals showing the expert’s interaction with his or her professional and client communities is
what I would now want to describe in terms of the development of the expert’s habitus, using
Bourdieu’s term deliberately to avoid any implication of the development within the expert of
explicit knowledge (and disliking the adjective ‘explicit’ in this statement because the
implicature of thus allowing the term ‘implicit knowledge’ may be highly misleading). That is, I
would say today that the process shown in Figure 6 captures much of the dynamics of expertise
formation but would want to make the matters of ‘knowledge acquisition’ and ‘knowledge
formation’ the subject of a different level of discussion.

The client community in Figure 6 constitutes the domain of practice for the expert, and the role
of knowledge-level explanation in that community might be expected to be very different from
that in the professional community which, among other things, constitutes the domain of
reflection. The conditions of satisfaction in the client community are ones of achievement in
problem-solving, not necessarily success but at least the assessment of ‘as well as might be
expected.” Discourse is at the level of potential outcomes, contingency plans, risk management,
about what might happen and how the contingencies may be managed under different action
plans rather than why questions involving foundational considerations of underlying models.
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The conditions of satisfaction in the professional community are ones of effective expertise
development and transmission, of access through apprenticeship, case reports, evaluation of
procedures, rationalization through links to existing models, related literatures and so on.
Discourse is at the level of managing the formation of expertise and this may involve reflective
processes raising why questions and addressing foundations, but note that the objective of these
is to develop expertise, a coaching function, rather than to discover ‘truth’ or uncover ‘reality.’
Rationalizations are valid to the extent that they help the development of expertise, and that
development does not necessarily leave any residue of the rationalization in the expert’s mind. It
is possible to have an effective knowledge-level approach to expertise development without
basing it on a knowledge-level approach to expert performance (Vickers, 1990).
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Figure 6 Expertise formation through expert-community interaction

Bourdieu’s other dimensions of field and social capital may also be exemplified in terms of
Figure 6. The expert acts in a specific situation within a social network of power relations with
clients, colleagues, regulatory agencies, and so on, and competes within that field for symbolic
capital that will affect his or her ongoing and future status within such fields. That is, the
decisions and recommendations made are not just an outcome of the problem situation and the
expert’s dispositions through his or her habitus, but also reflect the interaction of habitus and
field, in particular, the impact upon the expert’s symbolic capital of the possible outcomes. The
solution of any particular problem is situated within the processes of developing the overall
competence of the community as a social network. Shapin (1994) has documented the
importance of the power relations and symbolic capital in the development of science.
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4.4 An Overall Framework for Human Activity

Figure 7 is the latest version of an evolving model that we have used at many KAW meetings
and in many publications in an attempt to capture the entire conceptual framework for human
psychology, sociology, action and knowledge in a simple diagram.
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Figure 7 Levels and worlds of being

The central region presents a three-layer model of human entities, whether roles, people, groups,
institutions or societies. At the bottom are the processes of interaction with the environment, of
percepts, acts, reflexes, sensation, transducers, and so on. This is the level that is being emulated
and extended with increasing effectiveness through neural networks (Elman, Bates, Johnson,
Karmiloff-Smith, Parisi and Plunkett, 1999). At the top are the processes of reason, of
rationality, reflection, planning and so on. This is the level that is being emulated with increasing
effectiveness through digital computation. In the middle are the processes of practice, of culture,
habitus and field characterizing the mental and the social, action, mimicry, reward and
punishment. This is the level where neither neural networks nor digital computation have so far
provided adequate emulation, and lack of such emulation is the greatest impediment to the
development of expert systems.

The four surrounding boxes set human entities within the context of Popper’s (1968) three
worlds, as we have done in many previous papers, but adding a fourth world at the top to balance
the presupposed World 1 of physical reality with an equally presupposed World 4 of
transcendental a priori presuppositions and ideology. Popper would probably have placed our
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World 4 in his World 3, as a human artifact, but we separate it here to emphasize its
psychological and cultural status as something presupposed not constructed. Friedman (1999)
has presented a reconstruction of the work of the logical positivists, particularly Carnap,
suggesting that their contribution is best understood as offering a new conception of a priori
knowledge and its role in empirical knowledge, the link between our Worlds 4 and 1. Searle
(1998) has argued that realism is based on a presupposition of a real world underlying all our
further discourse and hence is not itself subject to empirical study, and there are other such
presuppositions.

The box on the left of the central core attempts to situate in relation to the three layers of the core
a hierarchy of World 2 levels of construction similar to those we previously derived from Klir’s
(1976) epistemological hierarchy generated through a system of distinctions (Gaines and Shaw,
1984), and have used to model various forms of knowledge transfer in individuals and
organizations (Gaines, 1994). The box on the right of the central core attempts to situate in
relation to the three layers of the core some major World 3 products, with Giddens’ (1986)
locales of practice in the center, and Gibson’s (1979) affordances at the bottom. One feature of
this representation of World 3 in relation to World 2 is that it stresses how human activity is not
just culturally situated in its habitus and socially situated in its field, but also artifactually
situated in a humanly built world that exists in major part to trigger off the dispositions within a
habitus. Our being is essentially embedded not only in the being of others with whom we interact
but with that of others who have left artifacts from their activities within which ours take place.

4.5 Implications for Research

There are many implications for research in the diagram above, far too many since research in
Al ES and KA cannot be expected to take on the problematiques of each and every discipline
represented in Figure 7. However, one can delineate some realistic research agendas.

There are two major research areas currently concerned with eroding the central territory of
practice in Figure 7 by extending the areas of interaction below it and reason above it.
Connectionist research has had major practical achievements in emulating human pattern
learning capabilities at the interaction level, and is seen by many researchers as capable of
emulating higher brain functions including the domain of practice. Spitzer’s (1999) The Mind
Within the Net: Models of Learning, Thinking and Acting is a good exposition of the state of the
art. Lenat’s Cyc project may be seen as an attempt to emulate human practice by extending the
domain of reason downwards and developing a rich habitus based on a massive knowledge base
coupled with a range of inference methods from logical deduction, through statistical induction,
to speculative reasoning based on analogy (Lenat and Guha, 1990). DARPA continues to fund
the development and application of Cyc through Cycorp (http://www.cyc.com/), and it is the core
system in a range of well-funded DARPA projects such as High-Performance Knowledge Bases
(HPKB, Cohen, Schrag, Jones, Pease, Lin, Starr, Gunning and Burke, 1998).

It is early days to forecast how far connectionism may move up or Cyc-like systems may move
down. One would expect success in domains where the habitus is strongly circumscribed, such as
highly specific roles that people play that, given the state-of-the art of emulation of human
sensory-motor systems, also involve strongly circumscribed interaction with the world. An
example domain of this nature that has been extensively studied is that of pronunciation of words
from text. DECTalk is a text-to-speech expert system with human capabilities modeled through
rules with exceptions, and one of the achievements of connectionism has been to show that a
neural net, NETtalk, can learn to speak better than the expert system (Sejnowski and Rosenberg,
1987). Later, Dietterich, Hild and Bakiri (1995) found that better performance than both
DECTalk and NETtalk could be achieved through standard machine learning algorithms. This is
an example of a significant but highly circumscribed habitus being modeled through approaches
from below and above, and a bridge being created between the modeling of human practice in
the expert system, connectionism from below, and machine learning from above. This is also a
domain where there are major literatures on child development, educational practice,
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psychological studies, cognitive models, and so on, where it might be reasonable to expect an
exhaustive synthesis to be feasible.

One form of habitus that should be more amenable to modeling by rules is where the behavioral
regularities are induced by normative rules such as government codes, company operating
procedures or equipment operation manuals. These examples characterize major areas of
successful application of expert systems technology. Business rules are generally imposed, not
induced from behavior, and it is notable also that Gensym’s list of success stories largely relates
to industrial process control. In such applications the expert system is put in place not so much to
model the habitus but to manage it. However, knowledge acquisition from experts is still relevant
because normative rule sets are rarely complete and require interpretive guidelines and
extensions often derived from practice.

The role of field and symbolic capital is also significant for expert system development. One
needs to situate the experts in their institutional setting and analyze their roles within their social
networks. What is their organizational function, how are they recruited, how do they acquire
expertise, to whom do they report, on whom do they rely for support, and how does all this play
out in terms of tasks, action, monitoring and control? A cognitive stance attempting to look
within the experts’ minds needs to be complemented with an institutional stance examining their
situations. In conventional systems development, task and situational analyses are routine
techniques and often lead to organizational redesign that simplifies or by-passes the need to
incorporate existing roles and expertise.

What technologies might be most effective in modeling habitus? It is interesting to note that the
Wittgenstein-derived literature on the incoherence of rules (e.g. Kripke, 1982), and the
Goodman-derived literature on the incoherence of inductive inference (e.g. Stalker, 1994) both
use exceptions to rules in their counter-examples, that is breakdowns in rules are fixed by adding
exceptions. Paul Compton and I (Compton and Jansen, 1990; Gaines, 1991a; Compton et al.,
1992; Gaines and Compton, 1995; Gaines, 1996; Richards and Compton, 1998) have long
promoted the representation of expertise through rules with multi-level exceptions as one that
arises naturally, is easy to acquire, update and understand, provides a pragmatic fit to complex
human action but supports reflection to extract the principled knowledge that corresponds to
insight. One can embed such rule-based model in as rich a representational schema as one
wishes, derived from pre-existent ontologies, just-in-time extensions to them or pattern-
formation in neural networks.

The major extension I would see as necessary to use such systems to more richly model habitus
is that multiple, prioritized rule sets need to be used and the conclusions need to be general
constraints not specific values so that the output is more a structured constraint system than a
single outcome (multiple-classification RDR go some way towards this, Kang, Compton and
Preston, 1995). This would allow for the resolution of conflicting constraints which no possible
action satisfies but where there is a set of admissible actions that satisfice the constraints, and
where the selection of a particular action among them is indeterminate. This indeterminacy is
realistic in terms of human practice and desirable since the role of randomness in breaking out of
sub-optimal behavioral loops and learning outcomes has been known since the early days of Al
(Gaines, 1969).

What theoretical developments are promising for modeling human expertise? I have already
discussed Pierre Bourdieu’s work on habitus, field and symbolic capital. John Searle (1998)
seems to me to be providing the richest and most operational framework for modeling human
intentional behavior that is consistent with the notion of habitus. Niklas Luhman (1995) has
provided a complementary framework for institutions based on his appropriation of the notion of
autopoiesis in the context of social systems. The appropriate mathematical foundations are to be
found in the literature on chaos theory and its application in the social sciences (Vallacher and
Nowak, 1994; Eve, Horsfall and Lee, 1997).
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5 Conclusions—Operationalizing the Enlightenment

This paper has had the pragmatic objective of attempting to provide some perspectives on
research in artificial intelligence, expert systems and knowledge acquisition that will be useful in
formulating future research agendas. It has recalled the initial excitement, expectations, and
aspirations, reviewed what has happened to date, shown the extent of the Michie effect whereby
Al developments, once understood, are assimilated into mainstream information technology, and
suggested research opportunities for knowledge support systems within the current ethos of
convergence and integration.

It has addressed the continuing impediments to the computer emulation of human expertise that
stem from inadequate theories of the nature of that expertise, and has surveyed developments in
psychological, cultural and sociological research that promise greater understanding of human
practice. It has suggested further research opportunities that bring those developments into the
ambit of artificial intelligence and support new approaches to expert and knowledge support
systems.

I subtitled this article, operationalizing the enlightenment, because it seems to me that computer
technology is the latest of many powerful tools that have been developed to further the processes
that we associate with Greek enlightenment’s invention of new modes of thought and argument
(Solmsen, 1975), and the seventeenth century enlightenment’s application and extension of those
intellectual tools, together with material tools resulting from advances in technology, to create
modern science (Cohen, 1994). The notion of enlightenment has been a focus of discussion for
some centuries with many responses, reactions and evaluations. Zollner’s question, what is
enlightenment?, in the Berlinische Monatsschrift of December 1783 prompted a range of
distinguished replies. Moses Mendelssohn saw it as “related to theoretical matters: to (objective)
rational knowledge and to (subjective) facility in rational reflection about matters of human life.”
Karl Reinhold saw it as “the making of rational men out of men who are capabable of
rationality.” Immanuel Kant saw it as “mankind’s exit from its self-inflicted immaturity...the
inabilility to make use of one’s own understanding without the guidance of another” and added
the aphorism “If it is asked ‘Do we now live in an enlightened age?’ the answer is ‘No, but we
do live in an age of enlightenment.”” (Schmidt, 1996)

The notions of rationality, and the freedom to be rational, are still with us as enlightenment
objectives, and Kant’s aphorism is as valid today as it was over two centuries ago. The
enlightenment is a project of which we all, as scholars and researchers, are part. The computer is
par excellence a tool for making rationality operational, for mechanically developing the
consequences of our postulates in an environment that ruthlessly exposes sloppy definitions and
invalid derivations. It is the ultimate tool of the enlightenment as we have conceived it so far.

However, from the discussion in Section 4 and the literature cited it should be clear that human
beings and their institutions are not naturally rational in this sense —enlightenment rationality is
a stretch goal, not a natural consequence of our being. And it may be a dangerous goal.
Horkheimer and Adorno (1972) have argued “the fully enlightened earth radiates disaster
triumphant.” Wojciechowski (1983) has exemplified this in the way that the majority of the
world’s problems now stem from knowledge, yet can only be solved by developing more
knowledge, the ultimate escalatory positive feedback loop. Bickerton (1990) has argued that our
higher level capabilities may not be survival traits for the species. Bourdieu (1988) has turned the
spotlight of his analysis of habitus on homo academicus and shown how scholarly practices
conform to the same principles as other behavior which we would not regard as rational by our
idealistic canons. Rationality is not a path to utopia but, in the developed world at least, it has
become one of those presuppositions that is core to the habitus created by our educational
systems. We could only attempt to reject it, in most spheres of our society, within a framework
that accepts it.
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I believe these deep discussions at the species level parallel significant discussions that need to
take place at the institutional level. Why should knowledge management that attempts to derive
explicit knowledge from implicit knowledge be expected to improve some evaluative measure of
an institution? Our habitus leads to this intuition, but that is as much a source of blindness as
insight. The entire conceptual framework needs deconstruction: what do we mean by ‘implicit
knowledge’; does it exist; what is it to make it explicit; can we do this; how should we proceed;
what outcomes should we expect; how can we measure the cost of doing all this and the benefits,
if any, that result? In practice, as with expert systems, some organizations will experiment, claim
benefit, and use this to advance their competitive position through their marketing stance, true or
not. That is the nature of practice, and the engineering of rationality is embedded in the socio-
economic practices of those responsible for it, like any other engineering project.

This is not to pour scorn on those who advocate some form of knowledge management. The
social practices that are described by major authors in this area are often interesting, innovative
and attractive, advocating more open and sharing institutions promoting the emergence of
leadership and teaming appropriate to changing contingencies. One can well imagine that the
processes advocated can be effective in improving performance, and that the rationale provided
is comprehensible, meaningful, acceptable and motivating. However, none of that connects the
rationale to the underlying processes that lead to these outcomes in any rational, scientific way.
Research on knowledge management does, however, as did that on expert systems, provide an
experimental playing field in which scientific research on those underlying processes might be
conducted. There are important opportunities to be grasped.

In conclusion, I think the field of knowledge acquisition research is as exciting, challenging and
rewarding as it was twenty years ago. It is far more daunting for the young researchers entering
the field because of the accumulated literature of many thousands of papers with links to other
rich literatures. It is less fashionable because industry’s focus of attention has moved elsewhere,
and start-up fields with small literatures are easier to enter and promise more rapid chances for
establishing one’s reputation. However, there are rich opportunities for major scientific and
technological contributions, and I hope this article has helped to indicate some of them.
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