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FOREWORD 

The Fuzzy Workshop held at Queen Mary College on Friday 9th January. 

1976 was aimed at bringing together the several groups working on fuzzy 

reasoning in the U.K. It echoes the similar workshops held in the U.S.A., 

Japan and Europe, in attempting to consolidate and cross-fertilize this 

rapidly growing field. 

The Workshop itself was a successful occasion for the participants. 

These proceedings make some of the material presented available in written 

form to the participants, and to a wider audience. Note that these are 

both working papers and papers published elsewhere in these proceedings 

(an indication is given if the proceedings are a proper reference)' Also 

there is no direct link between the presented papers and the written ones. 

The Workshop was an exchange or views - the proceedings are an exchange of 

information. 

As organizers we owe a vote of thanks to the several postgraduate 

students of Queen Mary College who helped to make the day run smoothly, to 

the catering staff who excelled themselves, and finally to the participants 

who made it worthwhile. 

E. H. Mamdani 

B. R. Gaines 



LIST OF CONTENTS 

O. Foreword 

1. List of Contents 

2. Programme 

3. List of Participants 

4. Report on Discussion Session 

5. Proceedings an asterisk indicates 
paper being published elsewhere. 

5.1* Fuzzy Control of Raw Mix Permeability at a Sinter Plant. 
G.A. Carter and M.J. Hague. 

5.2 Control of Complex Systems by Fuzzy Learning Atitomata~ 
Y.M. El-Fattah. 

5.3* Multi-valued Logic and Fuzzy Reasoning, B.R. Gaines. 

5.4 Why Fuzzy Reasoning? B.R. Gaines. 

5.5 Research Notes on Fuzzy Reasoning, B.R. Gaines. 

5.6* Application of a Fuzzy Controller in a Warm Water Plant, 
W. J • M. Kickert and H.R.· van Nauta Lemke. 

5.7* The Application of Fuzzy Control Systems to Industrial Processes, 
P.J. King and E.H. Mamdani. 

5.8 Topology and Automata, L.J. Kohout. 

5.9 The Functional Completeness of Pi-Algebras and its Relevance to 
Biological Modelling and to Technological Applications of Many­
Valued Logics, L.J. Kohout and V. Pinkava. 

5.10 Application of Fuzzy Logic to Controller Design.Based on Linguistic 
Protocol, E.H. Mamdani, T. Procyk and N. Baaklini. 

5.11 A Fuzzy Logic Controller for a Traffic Junction, C. P. Pappis . 
and E.H.Mamdani. 

5.12 Fuzzy Relational Equations and the Inverse Problem, . C. P. Pappis 
and M. Sugeno. 



5.13 Arrangement of Formulas and tfinimization in Pi-logics (Algebr'ac:;) 
V. Pinkava. 

5.14 Enumerably Infinite Valued Functionally Complete Pi-Logic Algebras. 
V. Pinkava and L.J. Kohout. 

5.15 The Implementation and Evaluation of a Fuzzy Control Algorithm 
for a Sinter Plant, D.A. Rutherford .. 

5.16 A Fuzzy Set-Theoretic Approach to Semantic Memory: A Resolution 
to the Set-Theoretic Versus Network Model Controversy, J.M~V. Slack. 

5.17 Possible Applications of the Theory of Fuzzy Sets to the Study of 
Semantic Memory, J.M.V. Slack. 

5.18* Subjective Evaluation of Fuzzy Objects, M. Sugeno, Y. Tsukamoto and 
T. Terano. 

5.19 An Assessment or a Fuzzy Control Algorithm for a Nonlinear Multi­
Variable System, R.l1. Tong. 



WORKSHOP ON DISCRETE SYSTEMS 

AND FUZZY REASONING. 

Friday 9th January 1976 

Queen Mary College, Department of 

Electrical and Electronic Engineering 
§3Q§3D§3D§3D§3D§ED§ED§ED§ED§ED§ED§ED§ED§ED§ED§ED§ED§ED§ED§ED§ED§ED§ED§ED§ED 

VENUE:- Lecture Room 102 in Department of Chemistry, Q. M. C. 

FINAL PROGRAMME 

9.30 COFFEE AND REGISTRATION 

10.00 

10.05 

10.45 

11.00 

11.15 

WELCOME, by E. H. Mamdani 

KEYNOTE LECTURE 

"Understanding Uncertainty" B.R. GAINES 

SESSION I - Chairman, B.R. Gaines 

"Fuzzy Integrals" 

"Aspects of Multivalued Logic" 

"Models of Decision Making in 
the Allocation of Resources" 

M .. SUGENO 

V. PINKAVA 

P • K. M' PHE.R.SON 



11.30 

11.45 

12.06 

12.30 

13.30 

14.00 

14.20 

14.35 

14.50 

15.10 

15.45 

16.00 

I -, 16.30 

16.45 

17.00 

17.15 

17.35 

18.00 

18.30 

"Ordinary Language Algorithms and Coping 
with Fuzziness in Everyday Life" 

"Discovery of Generative Structure in 
Empirical Data I1 

Discussion 

LUNCH 

B. LEWIS 

G. KL1R 

SESSION 11 - Chairman, E.H. Mamdani 

"Control Application of Fuzzy Logic" 

llImplementation and Evaluation of a 
Fuzzy Control Algorithm for a Sinter 
Plant ll

• 

"Analysis of a Fuzzy Controller" 

"Multivalued Logics of Movement 
Hierarchies" 

"Linguistic Reasoning in AL" 

Discussion 

TEA 

P. KING 

M. BRAAE, 
G.P. RAO & 
M.T. HAGUE 

W.K1CKERT & N.BAAKLINI 

L.J. KOHOUT 

P.J. HAYES 

SESSION III - Chairman, P.K. M'Pherson 

"Survey of Learning Automata" 

"Semantic Memories ll 

"Discrete Pattern Transformation" 

IIHow Natural are the Formulation of 
Fuzzy Set Theory?1I 

"Comments on Fuzzy Relation in 
Representing Cognitive Structures" 

Discussion 

FREE PERIOD - Drinks available at Bar. 

WORKSHOP DINNER 

Organisers: B.R. Gaines and E.H. Hamdani 

I.H. WIT'fEN 

J.M.V. SLACK 

D.G. TONGE 

J.L. CAMPBEtL 

G. PASK 



HORKSHOP ON DISCRETE SYSTEf'1S PJJD 

FUZZY REASONING 

Mr. S. ARNOLD 

Mr •. N. BAA.KLINI 

Dr. W. BA,\1!)I,_~.;E 

Dr. A. BOND 

Dr. r-1. BRAAE 

Dr. C. BRAVINGTON 

Dr. J.L. CAMPBELL 

Dr. F.J. EVANS 

Prof. B.R. GAINES 

Mr. M.J. HAGUE 

Mr. p. H. HAM!!iOND 

Friday 9th January, 1976 

Q.M.C. London 

LIST OF PARTICIPANTS 

ICI Corporate Lab. P.O. BOX 11, 
Runcorn, Cheshlre WA7 4QE 

Dept., Elect. Eng. Q.M.C. 
Mile End Road, London El 4NS 

RUNCORN 
73456 

01 980 t1811 

Dept. l-'Iaths, Et;~ex UIli v. COLCHESTE:E\ 
Wivenhoe Park, Colchester C04 3SQ 44141 

Dept. Computer Science, Q.J..1.C~ 
Mile End Road, London El 4NS 

CONTROL SYS7EHS Ctr. UHIST, 
BOX 88; HANCHESTER H60 lQD 

Automation Center, B.S.C. - C.E.L. 
140 Battersea Park Road, London 
SWll 

IBM U.K. LTD. Hursley Park, 
Winchester Hampshire S021 2JN 

Dept. Elect. Eng. Q.M.C. 
Hile End Road, London El 4NS 

Dept. Elect. Eng. Sci. Univ. 
Essex, Wivenhoe Park, 
Colchester C04 3SQ 

British Steel Corp. Research Ctr. 
P.O. BOX 106, Southbank, 
Middlesborough, Cleveland 186 6UT 

Warren Spring Lab. Gunnels Wood 
Rd., Stevenage, HERTS. 

01 980 4811 

MANCHEs'rER 
236 3311 

WINCHESTER 
4433 

01 980 ·1811 

COLCHESTER 
44144 

06495 
5391 

8TEVENAGE 

3388 



Dr. P. J'. Hl\YES 

Mr. W. KlCKERT 

Dr. P.J. KING 

Prof. G. KLIR * 

Dr. L.J. KOHOUT 

Dr. M.H. LEE 

Prof. B. LEWIS 

Dr. E. H. !·W·mANI 

Dr. A.J. MAYNE 

Mr .. C. MILES 

Mr. R. MOORE 

Mr. D.A. MOORAT 

Prof. P.K. M'PHERSON 

.Mr. C. PAPPIS 

Prof. G. PASK 

Cr. V. PINKAVA 

comput.er Sci., Uniy. Essex, 
Wivenhbe Pa.rk, Colchester 
C04 3SQ 

Nieuwe Plantage 20, Delft, 
HC)LLAND. 

Warren Spring Lab. Gunnels 
Wood Road, Stevenage, HERTS 

Suny at Binghamton, 
Binghamton, New York, 13901, 
U.S.A. 

Dept. Elect. Eng. Sci, 
Wivenhoe Park, Colchester 
C04 3SQ 

Dept., Computer Sei, U.C.W. 
Penglais, Aberystwyth, WALES 

Open Uni v ., Mil ton Key-nes, 
MK7 6AA 

Dept. Elect. Eng. Q.M.C; 
Mile End Road, London El 4NS 

Dept. Traffic Studies, Univ. 
College, Gower St. London WClE 
6BT 

lCI Corporate Lab. P.O.BOX 11, 
Runcorn, Cheshire WA7 4QE 

Dept. Elect. Eng. Sci, 
Wivenhoe Park, Colchester 
C04 3SQ 

28 Bullock Wood Close, 
Colchester, Essex. 

City Univ. Systems Eng. Dept. 
St. Johns Street London ECl 

Dept. Elect. Eng. Q.M.C. 
Mile End Road, London El 4NS 

System Research Ltd., 
2 Richmond Hill, Richmond, 
SURREY. 

Professor Department, 
Severalls Hospital,Colchester 

I 

COLCIIES'l'l::H. 
44144 

015-120128 

STEVENAGE 
3388 

COLCHESTER 
44144 

ABERYST\vYTH 
3111 

WATFORD 
22341 

01 980 4811 

387 7050/760 

RUNCORN 
73456 

COLCHESTER 
44144 

COLCHESTER 
62640 

253 4399 

01 980 4811 

940 0801/ 
5025 

COLCHESTER 
77271 



M.r. T.J. PROCYK 

Dr. G.P. RAO 

Dr. J.M.V. SLACK 

Dr. H.D. SMITH 

Dr. M. SUGENO 

Dr. R. TONG 

Mr. D.E. TONGE 

Dr. I. H • vHTTEN 

* Prof. G. Klir 

Meyboomlai:m 1, 
Wassenaar, 
The Netherlands. 

g 

De?t. Elect. Eng~ Q.M.C. 
M.ile End Ro~dl London El 4NS 01 980 4811 

Control Systems Centre, UMIST HANCHES'rER 
BOX 88, ~~NCHESTER M60 lQD 236 3311 

Social Sci., Open University, 09086 3596 
Milton Keynes, MK7 6AA 

Univ. Bradford,Psychology Dept. BRADF'ORD 
Bradford, Yorkshire, BD7 lDP 33466 

Dept. Elect. Eng. Q.M.C. 
Mile End Road, London El 4NS 01 980 4811 

Control & Management Systems Grp., 
Dept. Eng., Cambridge Univ., 66466 
Mill Lane, Cambridge. Ext 391 

Dept. Maths & Comp. Sci., 405 133 
Glamorgan Polytechnic, 2258 
Treforest, Mid-Glamorgan 

Dept. Elect. Eng. Sci,Univ. Essex COLCHESTER 
Wivenhoe Park, Essex C04 3SQ 44144 

(Until August IS, 1976) 

Netherlands Tel: 01751/19302. 



'f 

~URKSHOP ON DISCRETE SYSTEMS AND FUZZY REASONING 

Friday 9th January, 1976 

Discussion Session I & IT reported by T.J Procyk 

Chaired by Dr. E4H. Mamdani 

Professor M'Pherson began the discussion by raising the 
question of the relative cost-effectiveness of a fuzzy,two­
term and human controller for the sinter plant. Mr. Hague 
said that the fuzzy controller was more costly than a two..,. 
term one even if implemented in table look-up form on a 
microprocessor. He was in agreement with Dr .• Mamdani that 
using a microproces~or is often a false economy owing to the 
time required to interface it and program it. Dr. Mamdani 
was of the opinion that full facilities of a microprocessor 
are not required to implement a fuzzy controller but just a 
table look-up memory. 

The most fascinating piece of work coming from the session, 
according to Professor Gaines, was the move upwards into 
implementing a second hierarchical level capable of supervising 
the lower one. The ability to define a fuzzy goal from which 
the control rules evolve was a significant step forward. 
This 'bottom up' approach of starting with a simple problem and 
building it up in complexity was a philosophy that Dr. Mamdani 
said he adopted and suggested it as a useful approach for 
tackling complex problems. Professor MtPherson, who thought 
that Fuzzy Logic theory had not yet developed sufficiently to 
be applicable to many classes'of problems, agreed with 
Dr. Mamdani that Zadeh's theory is only 15 years old and still 
in its youth. Dr. Mamdani believed that Zadeh is constantly 
revising his theory and extending it so it should not be 
regarded as final. The added merit of Fuzzy Logic theory was 
that it is still open to modification unlike other multi-valued 
logics. 

Mr. Hague wished to point out that because of the difficulty 
of designing non-li.near controllers the success of the fuzzy 
controller is an important step in controller design. The 
results obtained by Professor Gaines from analysing the steam 
engine controlle:r showed that it was very robust and insensitive 
to small changes in its structure. The reason why many classical 
controllers were sensitive was, according to him, because of the 
stress put on exactness in calculations which produced numerical 
differences smaller than the noise margin. Dr. Mamdani added 
that the source of this robustness lay in the fact that the 
fuzzy controller was not a pedantic one but, from common sense, 
a reasonable one which consequently lent itself to a wide range 

Cont'd ••••• 
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of successful applications. 

The concern for a lack of suitable stability theory for 
fuzzy controllers and their trial and error synthesis was 
voiced by Professor Hamrnond. Dr. Mamdani replied that 
stability theory is always used with a mathematical model 
anyway which is not always exact. Consequently full 
confidence in a control system's stability is never j~stified. 
He did not think that such a theory existed since there is 
no equivalent of a frequency domain, in which stability is 
tested, for discrete systems. He added that because of the 
common sense nature of the rules runaway instability cannot 
arise. The oscillatory type of instability is less serious 
and can be cured by tuning the rules. 

Professor Gaines put forward a state-space approach which 
could be used for stability analysis. It consisted of the 
state-space marked~with areas over which individual rules have 
control and from this the system trajectory could be determined. 
The main objection to this method was made by Mr. Kickert 
saying that it was only practical for two dimensions while 
instability was only important for 3rd order systems upwards. 

Professor M'Pherson gave examples of some fast and accurate 
systems found in the defence industry for which fuzzy logic 
could not be conceivably used. This was very true, nccording 
to Dr. Matndani, who did not regard fuzzy logic as an alternative 
answer to control problems but as useful in certain applications 
for example the sinter plant or cement kiln. Professor M'Pherson 
nevertheless admitted that fuzzy logic should at least be tried 
in new applications and not dismis~ed at the outset. 

Dr. Smith stated that he was not concerned with stability 
as much as the control engineers were because he did not . 
believe that systems like management information or air traffic 
control, with which he is concerned, would ever become closed­
loop. In his opinion fuzzy logic had a place in such systems 
as a heuristic aid or guide with a human being present in the 
loop. Stability analysis was then not of such vital concern. 

On a historical note Professor Gaines, concluded the 
discussion by com.rnenting on the tremendous disruption caused 
by the 2nd World ~var and the ensuing period to work in mul ti­
valued logics. Only now has the work which terminated at the 
outbreak of the war been again revived and started to gain 
interest. 
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FUZZY CON'l'HOL OF RA'" MIX PERMEABILITY AT A SINTER PLANT 

INTRODUCTION 

G.A. Carter and M.l. Hague 

British Steel Corporation, 
General Steels Division, 
Research Orfjanisation (Teesside). 

The use of fuzzy set theory to design controllers has been 
pursued as a combined project by the University of Manchester 
Institute of Science and Technology and the British Steel 
Corporation. The project has a two-fold purpose: 

(i) To establish the worth of a "fuzzy set" 
theory and fuzzy logic to practical plant 
control. 

(in To provide a generalised control tool fo;£, 
systems where the plant dynamics are 
poorly described. 

Control system development requires some basic knowledge 
of the dynamics and statics of the plant to be controlled. The 
knowledge is conventionally obtained from one of two sources: 

(i) A theoretical relationship between the 
controller variables and the controlled 
variables .. 

(ii) A statistical appraisal of input and output 
signal spectral densities. 

The ability of using fuzzy set theory to "describe" a controller 
to a computer opens up the possibility of utilising performance 

. criteria used by good operators to calculate an advised contrOl 
action to all op'2rators. The application to blast furnace control, 
where computer models are rarely as ac:cu.cate as good ope:c.s.tors, 
is an obvious future consider ation for fuzzy control advice. 

At a Cleveland sinter plant, Cl two term controller exists for 
the control of water flow to a mixing drum and the opportunity has 
been t<1ken to try fuzzy logic control so that some comparisons can 
be made. The Cleveland scheme repres0T1ts a good test bed s~nce 
the plant is non-linear and there exists large measurement noise 
and input disturbances. 
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THE PLANT 

( a) Oper ation 

Raw mix of iron ore (60%), sinter fines (35%), coke (4%) 
and flux addition (1%) are fed to a mixing drum where water is 
added to optimise the permeability of the mixture just prior to 
laying it on the grate for sintering. If the mix is too dry, the 
bed will choke and little air can be drawn through the bed for 
ignition and combustion. Thus the time for the bed to "burn 
throughll will be long and the production rate low. Similarly, 
the mix must not be top wet otherwise the bed will sludge and 
again production rate will be low. This is described diagram­
atically for the sinter plant by Figure 1. The shape of the 
permeability/moisture curve is not fixed since it will depend on 
granulometry and the proportioning of the materials, both of 
which have to be changed for operational reasons. 

Manual control of water addition which is the per shift/per 
hour selection oibest water valve position, allows considerable 
fluctuation of permeability and therefore sintering rate to occur. 
The automatic control of water addition measures the pre-mix 
permeability and adjusts the water to achieve a .set point value. 
The set point value is near to but on the dry side of m;::!ximum. 

(b) Plan.t Dynamics 

The control scheme at Cleveland Sinter Plant is shown in 
outline by Figure 2. The transfer fUIlction between water 
addition and permeability to a first approximation is of the form -

Change in permeability (s) = Go 
Change in water 

T1 = 20 seconds 

T 2 = 30 seconds 

T 
-s 1 

e • •• (1) . 

The permeability is "sampled" once every 30 seconds. 
Uncorrelated measurement noise is assessed at Letween 10% and 
30% ~f the total measured signal. The gain term I Go I is the 
slope of the permeability/moisture curve. 

SIMULATION STUnIES 

A simulation of the performance of the sinter plant and 
the fuzzy algorithm was used as a dynamic check on the viability' 
of the proposed controller. 
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Th0 plant. was represented by a transfer function of the 
form of equation (1) witb the gain term GO represented by an 
adjustable non-linear function to simulate the non-linear 
relationship between moisture and permeability. In this 
way a rang0 of characteristics similar to those shown in 
Figure 1 were simulated. The control rules relate error 
and sum of error to changes in water addition as shown in 
Figure 3. 

.5.1/ 13 

Initial tuning of the controller was done by adjusting the 
scale factors associated with the look-up table using a procedure 
similar to that used when tuning a conventional controller. 

:rhe overall performance of the system was assessed in a 
number of ways: 

(a) It was found that the transient performance 
was only slightly affected by changing the 
time constant in the range 2: 1 and changing 
the dead time in the range 1. 5 to 1. 
Performance was also satisfactory for 
process gain changes in the range 4: 1. 

(b) Changing the permeability moisture relation­
ship to simulate changes to the raw material 
characteristics and to the initial moisture· 
content did not result in any significant 
degredation in perform ance, provided the 
plant did not move into the region of negative 
slope. 

(c) The response of the system to step changes 
in permeability set point was compared with 
t hat obtained with a conventional PI controller • 

. A range of gains were used and similar results 
obtained, except that when the onset of 
instability was reached the fuzzy controller 
gave a more gradual run away. 

(d) The effect of measurement noise oh the system 
was compared with that obtained when a PI 
controller was used. It was found that the 
fuzzy controller was better than the PI 
controller in that it gave a further reduction 
of between 10% and 15% in the mean squared 
error when the simulated noise levels were 
similar to those expected on the plant. 
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The results indicated that thn fuzzy controller was 
sUfficiently insensitive to plant chart.lcteristics to justify a 
plant trial and that it should operate satisfactorily on signals 
containing noise. 

RESULTS OF PLANT TRIAL 

A trial was carried out at Cleveland Sinter Plant, Teesside, 
on No.4 Strand during September and October, 1975. The two­
term controller was replaced by a portable PLP 11/10 mini 
computer (8 k stGre). 

The system was allowed to "track" for a period of about 
an hour to establish the "manual" level of permeability variations. 
Then the computer was switched to "control" and, after transients 
had decayed (16 minutes), the reduction in permeability deviation, 
manual to fuzzy logic control, was noted. A reduction in S:C of 
40% was recorded (Tablel). A similar trial, in two-term control, 
records a 33% reduction (Table 1) which is typical. The range 
of reduction achieved with two-term control varies considerably 
from 20% to 40%. Typical differential pressure (which varies 
inversely with permeability) versus time recordings are given in 
Figure 4. 

The trial was repeated on a later occasion when fuz~y control 
again, without any on-plant tuning, achieved a 230/0 SI.) reduction. 
Some attempt was made at ; on line I tuning. The scale of the 
control fuzzy set was reduced by half; the result was a 38% 
reduction in permeability stan.dard deviation compared with 
manual. Increasing the scale of the set by two indicated that 
control was ineffective with a marginal increase in permeability 
variation. 

DISCUSSIO~ OF PLANT RESULTS 

The essential part of this experiment was to demonstrate 
that a new control theory, using fuzzy logic could be used to 
control real pIGnt containing noise and non-linearity. The results 
amply demonstrate that fuzzy set control meet.s the requirements 
on this plant. 

FURTHEH 'ifORK 

Confidence has been obtained in fuzzy logic control and it 
is now intended to apply the method to plallt where the require-
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ment for little or no on plant tuning is m ntched by n poor 
knowledge of the plant, yet whos(~ control philosophy can be 
written down as a set of linguistics. 

ACKN OWLEDGEMENTS 

The authors wish to acknowledge the assistance given to 
this project by Mr. C.G. Bloore and Mr. G. Summers who 
respectively carried out the simulation work and plant trials 
as part of their masters dissertations. Also the work of 
Mr. K. Crudgington, Research Organisation of the British 
Steel Corporation for providing the technical expertise on 
plant ?Dd the plant management for allowing the trials to take 
place. Acknowledgement is also made to the British Scientific 
Research Council for provision of computing facilities for 
simulation studies. 

REFERENCES 

1. C.G. Bloore! "An Heuristic Adaptive Controller 

5"., lis 

for a Sinter Plant 11 • M. Sc. 
Dissertation~ University of Manchester, 
November 1974" 

G. Summers: 

BD. 
19th January, 1976. 

"Digital Control of a Sinter Plant." , 
M.Se. :Cissertation, University of 
Manchester, December 1975. 



s., I i 6 

0/0 MoiSTURE 

, , 
\ 

\ 
\ 

CURVES CD®@ 
REpRESENi POSSIBLE 

RESUL is OBT AINEO WI1'H 

OIFFEREl-oJi CONSiliUENTS 

iYPICAL RELAilONSHIP BETWEEN MOIS-rURE· AND 

PERMEABIL.ITY IN A RAW MJ'X SAMPLE 

FIG. 1. 



IX: 
w 
I-

~ 
Ul 
~ 
a: 
o 
3 

Cl. 
o 
I­
~ o 
0. 

1-. 
w 
Ul 

a: 
ID 
t-
:l 
0. 
I 
0 
U 

..J 
0 
et. 
I-

~ Z 
0 
0 

<> 
et: /.' 
wLIJ 
~~. 

-

< 
~ 
(l ( 
n.. 
IJl I!' 

.... 
r 

Cl , 
W 
X 
~ 

ffi 
t-
2 
in 

o 
2 « 
tt. 
:n 

........... 
IfI 

< ~IJI ... w <x 
m 0 
- U) 

<0 
~2 <j 
--
.,;' 

A DIAGRAMMAilC REPRESENTAilON OF 1HE 

PERI\.1EABIL1,.'1 CONiROL SCHEME 

~. I I 17 

~,... 

2 w «2 
u. ~ 
o :r: 
r 0 

F1G.2. 



.HE FOLLOWING CONiROL RULES ARE PREsENieO IN ,HEIR LlNGUIS11C 

S:ORM 10GEiHER WIiH THE iABLE OF OUTPUiS ,!-IE,/ GeNERA,E 

5 

. ALGORITHM 1 
IF E l5 PS AND 5 15 P8 OR. PM OR. PS 1HEN W IS PS 

IF E '5 P6 AND 5 IS ZE OR. N5 THeN W IS PM 

11= E 15 PS AND 5 15 N8 OR NM THe~ W 15 ZE 

IF e IS PM OR PS AND 5 IS pe OR PM lHENW IS PM 

u: e J5 PM AND 5 IS PS OR ZE 1HEN W 15 'PS 

IF e 15 PS A~OS 15 PM OR PS OR ZE ,HENWI51'S 

IF e 15.Z E Aa-JO 5 IS PS OR PM THEN W IS PS 

IF e IS ZE ANDS 15 PS OR ZE OR NS THEN W IS ze 
IF E IS ZE AND 5 IS "'8 OR NM THEN W IS NS 

IF E IS N5 AND 5 IS NM OR .as OR ZE THEN W IS NS 

IF E IS NM AND 5 IS N5 ORZE 'HENW'SNS 

n= E ·15 NM OR NS AND 5 IS NB OR NM ,HEN W IS t-JM 

IF E IS NB A1\lO S IS PB OR PM lHEN W IS ZE 

IF E IS NB AND 5 IS PS OR ZE iHEN W 15 NM 

IF E IS NB AND S IS NB OR NM .OR NS "THEN W IS NB 

E 

-6 -s -4 -3 -2 -I 0 I 2 

-6 -3 -3 -2 -2 -2 -2 -I -I 0 

3 

0 

~s -3 -3 . -2 . -I .... 2 -2 -·1 -J 0 ·0 

-4 -3 -3. -2 -I -I -I -I -I 0 I 

~3 -3 -2 -I -J -I -I 0 0 0 I 

-2 -3 -3 -t . -I -I -I 0 0 0 r 
-I -3 -3 -f -I -I -I 0 0 I , 

. 
0 -2 -2 -I -, -I . -1 0 I t I 

J -2 -2 -, -I -I 0 0 I I I 

2 -2 -2 -2 -I 0 0 0 I 1 I 
3 -I -I -I -I 0 0 0 I I f 

4 0 0 0 -I 0 I 1 I I I 

5 0 0 0 0 0 I I 2. 2 I 

G 0 0 0 0 0 I I 2 2- 2. 

4- 5 6 

0 0 0 

- 0-.---0 0 

0 0 0 

I I I 

2 2 2 
I 

I 2 2 
I 2 2 

I 3 3 
I .3 3 
I 2. 3 
2 3 3 

2 3 :3 

2. 3 :3 

. FIG.3. 



£".,/ I 'f 

VOLlS (op) 

MANUAL CONiROL 

o 
o -----l. ~~ . liME (MINUiES) 

32 

VOLiS(OP\ :'.'-'," ','.', "',"')',.1· 
FUZZY Se,. CONiROL 

I 

o 
o 32 -----11......... ilME (M1NUiES) 

lYPICAL CURVES of PERMEAMEjER OtFFERENilAL PRESSURE 

VE I<S.US -rIME BOiH IN MANUAL ANt:) AUiO CONi~OL 

FIG.4. 



5". f / J..O 

SO OF 0/0 REDOCTlON 
lR.AL lYPE OF-

D''FFERE~TIAL IN SO DAlE OF 

NUMBER. CON1ROL PRESSURE. (V."V. MANUAl.) 
"TRIAL 

(VOlIS) 

f. MANUAL 0·27 - 8 SEPT. 'is 

fUZZY se; o '16 40% 

. 

2. MANUAL 0·26 - 23 SEPT.'iS 

FUZZY seT 0'20 '23% 

F-LlZZ)' SEl (';'2) O' 16 38 % 

FUZZY SET (X 2) 0-27 -4°10 
" . 

. " 

3. MANUAL 0-18 - '2 cc,. )is 

'TWO iERM 0·12 '33°/0 
CO/.J1ROL 

"TABLE SHOWING RECOROEO CHAto.IGES INS'ANOARD 

DEVIA,.'ON OF PERMEABILli'Y FOR OIFFERENi MODes 

'OF CONiROL 

lABLE 1. 



11 

CONTROL OF COMPLEX SYSTFMS 

BY FUZZY LEARNING AUTOMATA 

by 

Y.M.El-Fattah 

1. AIMS OF THE PROJECT: 

The aim of the project is to search for new methods 

for control of complex systems, where the goals" the 

constraints, and the consequences of possibZe actions 

are too ill defined or complex to admit of precise or 

conventional mathematical anaZysis.It is hoped that 

the research results couZd be appZied to a specific 

technological process. 

2. METHODS OF THP PROJECT: 

The theory of fuzzy sets and automata will be mainly 

employed in that search. The research will p~rallel the 

development of learning control systems which has tradi­

tionaZy drawn on Markov processes, statistical decision 

theory, automata theory, hill-climbing techniques, infor­

mation theory, and pattern recognition,cf. e.g. ·Y.M. EL­

FATTAH [1J, [2]" K.S.FU r.3] .. L.M.LYUBCHIK andA.S.POZl'lYAK 

[4]. The search ",ilt attempt to extend and elaborate on 

the results of related works like S.S.L.CHANG and ZADEH[S] 

W.G.WEE and K.S.FU[6] , K.ASAI and S.KITAJIMA [7]., L.A. 

ZADEH [8] , to mention just a few. 
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3. OUTLINE OF THE ANALYSIS: 

m Let U c R be the set of feasible contpols, and 

Y c Rn be the set-of system outputs. At any time step 

t denote the contpol input and the system output by u(t) 

and yet), pespectively. The next system output y(t+l) 

. is consideped as a fuzzy set p(t+1) on Y. The contpolled 

system is peppesented by a fuzzy mapping [5 lfpom Y xU 

into Y, 

f: Y x U ..... Y 

(1) 

The control policy is represented by a fuzzy mapping 

from Y into U 

g: Y .... U 

(2) 

The control u(t+l) is represented as a fuzzy set q t+1) . 
on U. 

We capry out the discretization of the domain of 

outputs Y and controls U into some sets of subdomain~ 

{Yi } and {Ui }respectively such that 

Yi1 0 Y. My.=0 (i~j), 
s1 

Yi=Y, (i,j=l, .. ,sl) , Y.cr" u 
1. J 1. i=l 

(3) 

(i~j) " 
s2 

Ui=U" (i"j=1" .. ,s2) U.i 0 .t U.n U.=0 U.cU" U 
1. 1. J 1. --1 -z..'" 

where e is the null set. 
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As a model of the controlled system being investigated 

~e propose to use a fuzzy learning automaton [6] ~ [7] ~ 

i.e. a fuzzY automaton for which the membership functions 

~hich are entries of the transition matrix are modified 

by a suitable learning operation. 

A fuzzy learning automaton is also considered as a 

model of the controller. The automaton updates the 

entries of the fuzzy mapping ng " each time information 

is fedback from the oontrolled system and its modeZ J 

see Fig.1. 
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MULTIVALUED LOGICS AND FUZZY REASONING 

B. R. Gaines 

Nan-Machine Systems Laboratory, 
Department of Electrical Engineering Science, 
University of Essex, Colchester, Essex, UK. 

1 Shallow and Exact Reasoning 

These notes are concerned with recent developments in multivalued 
logic, particularly in fuzzy logic and its status as a model for human 
linguistic reasoning. This first section discusses the status of formal 
logic and the need for logics of approximate reasoning with vague data. 
The following sections present a hasic account of fuzzy sets theory; fuzzy 
logics; Zadeh's model of linguistic hedges and fuzzy reasoning and finally 
a bibliography of all Zadeh's papers and other selected references. 

Models of the human reasoning process are clearly very relevant to 
artificial intelligence (AI) studies. Broadly there are two types: 
psychological models of what people actually do; and formal models of what 
logicians and philosophers feel a rational individual WOUld, or should, do. 
The main problem with the former is that it is extremely difficult to 
monitor thought processes - the behaviorist approach is perhaps reasonable 
with rats but a ridiculously inadequate source of data on man - the intro­
spectionist approach is far more successful (e.g. in analysing human chess 
strategy) but the data obtained is still incomplete and may not reflect the 
actual thought processes involved. 

Formal models of reasoning avoid these psychological problems and 
have the attractions of completeness and mathematical rigour, hopefully 
proving a normative model for human reasoning. However, despite tremendous 
technical advances in recent years that have greatly increased the scope of 
formal logic, particularly modal logic (Snyder 1971), the applications of 
formal logic to the imprecise situations of real life are very limited. 
Some 50 years ago, Bertrand Russell (1923) noted: 

"All traditional logic habitually assumes that precise symbols are being 
employed. It is therefore not applicable to this terrestrial life but 
only to an imagined celestial existence ••••• logic takes us nearer to 
heaven than other studies". 

The attempts of logicians to rectify this situation and broaden the 
scope of logic to cover various real-world problems has been surveyed 
recently by Haack (1974), and the role of modern developments in philoso­
phical logic in AI has been excellently presented by McCarthy & Hayes 
(1969). These present notes are concerned with an area of massive recent 
development not covered by either of these references, that of 'fuzzy logic' 
and approximate reasoning initiated by Lofti Zadeh. 
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It is no coincidence that Zadeh's previous work had been concerned 
with successively improved refinement in the definitions of such terms as 
'state' and 'adaptive' in systems engineering. It was dissatisfaction 
with the decreasing semantic content of such increasingly refined concepts 
that led to his (1972 "Fuzzy languagestl

) remarks that: 

"In general, complexity and precision bear an inverse relation to one 
another in the sense that l as the complexity of a problem increases, the 
possibility of analysing it in precise terms diminishes". "Thus, 'fuzzy 
thinking' may not be deplorable, after all, if it makes possible the 
solution of problems which are much too complex for precise ana1ysistl

• 

During recent years Zadeh (see bibliography) has developed in 
detail a model for approximate reasoning with vague data. Rather than 
regard human reasoning processes as themselves "approximating" to some more 
refined and exact logical process that could be carried out perfectly with 
mathematical precision, he has suggested that the essence and power of 
human reasoning is in its capability to grasp and use inexact concepts 
directly. He argues that attempts to model, or emulate, it by formal 
systems of increasing precision will lead to decreasing validity and 
relevance. Most human reasoning is essentially 'shallow' in nature and 
does not rely upon long chains of inference unsupported by intermediate 
data - it requires, rather than merely allows, redundancy of data and 
paths of reasoning - it accepts minor contradictions and contains their 
effects so that universal inferences may not be derived from their presence. 

The insight that Zadeh's arguments give into the nature of human 
thought processes and, in particular, to their support of replication in 
the computer, are of major importance to a wide range of theoretical and 
applied disciplines - particularly to the role of formalism in the 
epistemology of science. The arguments have become associated with 'fuzzy 
sets theory' (Zadeh 1965) and this does indeed provide a mathematical 
foundation for the explication of approximate reasoning. However, it is 
important to note that Zadeh's analysis of human reasoning processes and 
his exposition of fuzzy sets theory are not one and the same - indeed they 
are quite distinct developments that must be separated, at least 
conceptually, if a full appreciation is to be had of either. As analogies 
one may conceive that fuzzy sets are to approximate reasoning what 
Lebesgue integration is to probability theory; what matrix algebra is to 
linear systems theory; or what lattice theory is to a propositional 
calculus. 

The table below was compiled from an up-to-date bibliography on 
fuzzy systems containing some 300 references (Gaines & Kohout 1976) and 
demonstrates the growth of such work in recent years: 

65 

2 

66 

5 

67 

4 

68 

11 

69 

16 

70 

17 

71 

31 

72 

46 

73 

58 

74 

64 

75 

31 (at May 75) 

Table of papers on fuzzy systems by year of publication 

The relevance of this work to AI is indicated by its many recent applications 
to subject areas such as: pattern recognition (Siy & Chen 1974); taxonomic 



clustering (Bezdek 1974); analysis of line drawings (Chang 1971); robot 
planning (Goguen 1974, Kling 1973 t LeFaivre 1974); medical diagnosis 
(Albin 1975); engineering design (Becker 1973); systems modelling 
(Fellinger 1974); process control (Mamdani & Assilian 1975); and manage­
ment information systems (Wenstop 1975). The remainder of these notes 
are concerned with fuzzy sets theory, fuzzy reasoning, and its relations 
to developments in multivalued logics. 

2 Fuzzy Sets Theory 

Zadeh (1965) first developed the concept of a fuzzy set as an 
extension of that of a standard set in which the characteristic function, 
A(x), of an element, x, of a set, A, was allowed to take not only the values 
o (not a member) and 1 (a member), but also to range anywhere between these 
values - the semantics were to be consistent with the natural order on the 
unit interval, e.g. that A(x)=O.6 denotes a greater 'degree of membership' 
than does A(x)=O.4. To correspond to the natural concepts of intersection 
and union it would be expected that the degrees of membership to fuzzy 
subsets t A and B, would not be decreased in their union nor increased in 
their intersection. Zadeh postulates that the resultant values are the 
lowest and the highest possible, respectively: 

C == A IJ B -+ C(x) = max(A(x) ,B(x» 

C = A ~ B -+ C(x) = min(A(x),B(x» 

It remains to define the complement of a fuzzy set, and Zadeh postulates 
that: 

B == A -+ Sex) = l-A(x) 

(1) 

( 2) 

( 3) 

All these definitions reduce to the standard case when the character­
istic function is restricted to its usual binary values. However, it would 
be fallacious to assume that the extension outlined is the only one with this 
property. For example, whilst the definitions of union and intersection use 
naturally defined extreme values, that of negation may seem more arbitrary. 
Any antitone mapping of the unit interval into itself that inverted 0 & 1 
would also be consistent with both the binary case and the semantics of the 
ordering of truth values. For example, an alternative negation, At might be: 

.. 
B=A -+ { 

1 if A(x)==O 
B(x) == 

o otherwise 
( 4) 

This has the property that, in general, A ~ A, which is desirable in 
modelling the intuitionistic propositional calculus (IPC - section 3.1) where 
inferences from negative data are disallowed. Zadeh has discussed altern­
atives to definitions (1) through (3), as have many other authors - the 
particular 'max' and 'min' rules of fuzzy sets theory are not fundamental to 
its application to approximate reasoning. However, they are the most widely 
used bases for fuzzy logic in the literature. 



Given these basic definitions it is possible to 'fuzzify' any 
domain of mathematical reasoning based on set theory by assuming that 
variables do not take specific values but instead have a separate 'degree 
of membership' to each possible value. That is, instead of having a sharp 
value, a variable is fuzzily restricted to a domain of values. The 
definition of the 'value' of a function of many variables may now be 
extended to fuzzified variables in a natural way - if in the standard case 
y=f(xl,x2, ••• ), and u(xl) is the degree of membership of a particular 
'value' to xl, then: 

u(y) 
[ 

MAX (min(u(xl),u(x2), •• » 

= 0: if no x exists 

where x=(xl,x2, ••• ) is any n-tuple such that y=f(xl,x2, ••• ). That is: 

( 5) 

with each argument to the function is assoicated a degree of membership that 
is the lowest of those of each of its components; and with each value of 
the function is associated a degree of membership that is the highest of all 
the arguments resulting in that value. 

In the same way that probability distributions are normalized to 
sum to unity and this is preserved under transformations, there is a natural 
normalization of the degrees of membership of a variable that is preserved 
under fuzzification. A fuzzy variable is said to be 'normalized' if at 
least one value has a degree of membership of unity. It is readily seen 
that a function, fuzzified as in equn.(5), of normalized varianles is itself 
normalized (there must be at least one argument with degree of membership 1 
and this will give a value with the same membership). 

Zadeh's 1965 paper was presented as an extension of set theory and 
there has been a great deal of literature concerned with the technicalities 
of fuzzifying various mathematical structures, topologies, automata, etc., 
and determining what theorems remain proveable in the essentially generalized 
structure. Such work underpins the foundations of any future applications 
of fuzzy sets theory and is included in the bibliography. However it is 
the semantics of the theory applied to vague reasoning that there is most of 
relevance to AI. 

3 Fuzzy and Other Multivalued Logics 

Any logical structure may be fuzzified by considering propositions 
to have degrees of membership to truth values. If we take the conventional 
prepositional calculus (PC) with truth values 0 & 1, then after fuzzification 
each statement, A, will be represented by a pair of values, (al,a2), 
representing its degree of membership to falsity and truth, respectively. 
For example, fuzzifying the truth table for implication,~, in PC gives the 
following expression: 

If C = ~B then (cl,c2)=(min(a2,bl) ,max(min(al,bl) ,min(al,b2) ,min(a2,b 2») (6) 

Similar expressions may be derived for fuzzifying the truth tables of 
negation,""', disjunction, v, conjunction, 1\ , and equivalence,;:, but they 
are more meaningfully obtained by noting that fuzzification preserves the 



relations glvlng interdefinability of the connectives of PC. That is, if 
F is any false proposition (Le. (fl,f2)=(1.,O», then we may write: 

""JA for A':::> F 

A v B for ,.., A J B 

AI\B 

A=. B for (A :> B) 1\ (B J A) 

Equn.(7), fOr example, when substituted in (6) gives us: 

If B =~A then (bl,b2)=(a2,al) 

and, similarly, expressions may be derived for the other connectives. 

If we assume the fuzzy variables are normalized then, as there is 
only one non-zero component, there is a 1-1 correspondence with the unit 
interval that simplifies the above expressions. Let: 

a = (1-al+a2)/2 

(7) 

( 8) 

( 9) 

(10) 

(11) 

(12) 

and so on for the other variables (this transformation can be inverted given 
that one of al and a2 must be 1). Then the equations for the logic 
operations become: 

C =A::>B ~ c = max(l-a, b) (13) 

B =.vA ~ b = I-a (14) 

C = Av B -+ c = max(a,b) (15) 

C = A 1\ B ~ c = min{a,b) (16) 

C = A.= B -+ c = min(max(l-a,b),max(l-b,a» (17) 

This set of simpler equations is what a number of authors have proposed 
as a 'fuzzy logic' (e.g. Lee 1972), probably not deriving them as a 
fuzzification of PC but instead as a direct set-theoretic interpretation of 
a logic based on equns.{l) through (3). The relation between equns.(3) & 
(14) is particularly interesting since fuzzification does not involve the 
complement operation, and hence the coincidence of definitions shows that 
Zadeh's definition of a fuzzy complement is a natural one for PC. 

3.1 Relationship to VSS and Godel & Lukasiewicz Logics 

Equns.(15) & (16) are valid for the disjunction and conjunction 
connectives of a wide range of multivalued logics (Rescher 1969), and it is 
interesting to examine the relationship of the system of equns.(13) through 
(17) to such logics. It turns out to be identical to the infinitely valued 
version of the 'variant-standard sequence' (VSS) investigated by Dienes 
(RescheI' 1969 p.49) - i.e. VSS is exactly the fuzzification of PC. This 



logic has a defect in its semantics of inference, as noted by Lee (1972), 
that the assertion that A implies B (with value 1) does not necessitate that 
b~a, the truth value of B is greater than or equal to that of A. This 
seems a natural requirement in terms of our interpretation of the natural 
ordering of 'degrees of membership', and is implicitly assumed in most 
practical applications of fuzzy logic (e.g. Mamdani & Assilian 1975). It 
enables the assertion of a rule of the form, ~B, to be interpreted that B 
has a truth value in a particular instance at least equal to that of A, and 
hence greater than or equal to the maximum of any AI, A2, etc., that imply B. 

If we require that the truth value of A~B is 1 when b?a then this 
may be used to define a variant of VSS based on some subset of definitions 
(9) through (17). To complete the definition of implication we must define 
the truth value of A~B when b<a. Two possible definitions are: 

c = A=> B -+ c = 1 if b?a, c = b otherwise (18) 

C = A;:J B -+ c = 1 if b?a t c = l-a+b otherwise (19) 

so that, when the implication is not absolute, the truth value is that of the 
implied proposition (equn. 18), or (equn. 19) it is a function of the 
difference between the two. If we couple each of these definitions with (7) 
for negation, (10) for equivalence, (15) for disjunction, and (16) for 
conjunction, we get two important systems: equn.(18} gives Godel's infinitely 
valued logic (Rescher 1969 p.45) which has a negation similar in form to the 
complement of equn.(4) and is closely related to the intuitionistic 
propositional calculus; equn.(19) gives Lukasiewicz's infinitely valued logic 
(Rescher 1969 p.37) which is the one used by Zadeh for statements inVOlving 
truth and falsity in linguistic reasoning. 

3.2 Relationship to Probability Logic 

Other multivalued logics, some with connectives other than those of 
equns.(15) & (16) for disjunction and conjunction, may be derived from other 
subsets of these definitions - only the semantics of particular classes of 
situation can determine whether one system is more appropriate than another. 
The only other one to which I shall draw attention is that of 'probability 
logic' (PL). Rescher (1969) shows that the standard axioms for unconditional 
probability may be regarded as defining a logic which is closely related to 
the modal logic SS. PL is not truth-functional in that the truth value of a 
proposition is not uniquely defined by those of its components. Gaines (1975 
"Stochastic ••• ") has shown that PL may be made truth functional in two 
distinct ways: (a) By assuming statistical independence between atomic 
components, a common assumption in systems engineering; (b) By assuming that 
of any two atomic components one must imply the other, giving a fuzzy logic 
satisfying equns.(lS) & (16). 

The equivalents of equns.(lS) & (16) for a PL with assumed statistical 
independence are: 

c = A 1/ t3 -+ c = a+b-ab ( 20) 

C = A~ H -+ C = aD ( 21) 



Gaines .(1975 "Stochastic ••• ") has re-analysed Mamdani & Assilian's (1975) 
data on experiments with a fuzzy logic linguistic controller using this 
form of connective and shown that it makes no difference to the results -
the 'fuzzy reasoning' used is robust to changes in the form of 'fuzzy logic' 
on which it is based (more information on this controller is given in my 
notes on tlControl Engineering & AIIf). 

Gi1es (1975) has given a model for various forms of multivalued and 
probability logics as a dialogue between two participants, in essence a game-
theoretic semantics. Gaines (1975 "Fuzzy ••• ") has given an alternative 
model that also encompasses both probability and fuzzy logics in terms of 
the responses of a population (e.g. people or neurons). Atomic propositions 
are modelled as questions to which each member of the population makes a 
binary, yes/no, response - the truth value of a proposition is the proportion 
of 'yes' responses, and that of compound propositions is determined by 
counting those who say yes to both A & B for terms of the form, AAB, and so 
on for more complex compounds. This is essentially a set-theoretic model of 
a general logic and different specialized forms may be obtained by adding 
further constraints to it: 

(i) If we assume that a 'yes' to A implies a 'no' to ~A then we obtain 
Rescher's probability logic; 

(ii) If further we assume that the responses are independently distributed 
in the popUlation we obtain what Gaines (1975) terms a 'stochastic logic' 
satisfYing equns.(20) & (21); 

(iii) If we assume instead that members of the population each evaluate any 
questions according to the same criteria but each require a different, 
individual 'weight of evidence' to reply 'yes', then we obtain a fuzzy logic 
satisfying equns.(15) & (16). 

This last assumption, so different from the conventional one of 
statistical independence, also has its intuitive attractions. Reason (1969) 
has shown that the threshold applied by people in coming to a binary decision 
on an essentially analog psychophysical variable seems to be associated with 
personality factors and is characteristic of the individual. If so, human 
populations would tend to show a more fuzzy than stochastic logic in their 
overall decision making. Similarly the concept of uniformity in information­
processing but varying thresholds of sensitivity is a reasonable one for 
populations of cells. Note that both the Giles and Gaines models give the 
pure forms of the logics as extreme cases - the most reasonable general 
assumption is a mixed form of probability/fuzzy logic. 

Thus developments in 'fuzzy logic' and 'fuzzy reasoning' may be 
related both to classical multi valued logics and to classical probability 
theory. One suspects that there must be some underlying unifying structure 
that would form a better basis for modelling human reasoning than any of 
these particular logics alone - certainly no one of them has a claim at 
present to be the one correct logic for reasoning under uncertainty. 

4 Linguistic Variables, Hedges and Fuzzy Reasoning 

Whilst the technical aspects of both fuzzy sets and fuzzy logics 
have attracted much attention and are fascinating and significant in their 



own right, it is in their application to linguistics and approximate 
reasoning that their practical importance lies. It is not possible to do 
justice in these notes to Zadeh's prodigious output and detailed arguments, 
or to the application studies of recent years. The following extracts 
are intended to give a feel for the approach and motivate further reading 
of the literature in the bibliography. A good general introduction is 
given in Zadeh (1973 "Outline of ••• "); Lakoff (1973) gives a linguistic 
introduction; Goguen (1974) is more technical but relates categories and 
concepts; Kling (1973) and Lefaivre (1974) have developed a version of 
planner capable of fuzzy reasoning; Albin (1975) and Wenstop (1975) have 
used models of fuzzy reasoning in studies of medical diagnosis and 
management information systems, respectively; and so on - the subject area 
now has a high semantic content in addition to its technical attractions. 

Three illustrations will serve to define the type of problem with 
which Zadeh is concerned: 

(l) Reasoning with 'linguistic variables f such as: "young", "middle-aged", 
"tall", or "rich", rather than precise quantities such as: 1112 years old", 
"45 years old", "6 feet tall", or "having $lW'; 

(2) The effect of general linguistic 'hedges' upon such variables, e.g. 
"very small", "more or less tall", "fairly rich", etc., which allow a single 
concept to be extended in a standard way to cover many more situations; 

(3) Syllogisms for approximate reasoning with linguistic variables, e.g. 
"John is very old - Charlie is about the same age as John - so Charlie is 
old" • 

Zadeh represents the meaning of a linguistic variable as a 
'compatibility function' or 'fuzzy restriction' assigning a degree of 
membership to each possible value of the variable. For example, "older" 
might correspond to degrees of membership commencing at 0 for age 0 and 
increasing very slowly to 0.1 at age 25, to 0.3 at age 40, and then more 
rapidly to 0.9 at age 65, and then more slowly, asymptotic to unity. The 
numerical forms of such functions do not matter a great deal since it is 
the order relations that play most part in the later development. MacVicar­
Whelan (1974) has performed some psychological experiments on their form 
and Lakoff (1973) reports similar experiments. Individuals do find it 
natural to assign such numerical values to the degree of compatibility of a 
particular value with a concept. Alternatively one may think of a popul­
ation model in which the compatibility is measured in terms of the proportion 
of people who say, "yes. a young man may be 25 years old". Many models are 
possible and it is useful to have one in mind, but again much of the 
development of a theory of linguistic reasoning is independent of the exact 
rodel. 

Zadeh has given a detailed account of how, given the compatibility 
function for a single linguistic variable such as "young", the compatibility 
functions may be calculated for the same variable subject to linguistic 
hedges, "not very young", "more or less young", etc. He shows how complex 
hedges may be decoded by a standard syntax into a number of elementary 
operations on compatibility functions and gives approximate forms of such 
operations as arithmetic operators. These definitions give a superficial 
appearance of mathematical precision to the effect of hedges. However 
Zadeh introduces the notion of 'linguistic approximations' in which 
compatibility functions resulting from a process of fuzzy reasoning are 



described by the closest reasonably simply-hedged linguistic variable. 
This process means that the reasoning itself is essentially approximate, 
'shallow reasoning' that loses infOrmation at each stageJand may therefore 
consist only of comparatively short chains. 

As noted in Section 3, the logic which Zadeh chooses to fuzzify 
for linguistic statements involving truth or falsity is one of Lukasiewicz's 
multivalued logics with connectives defined by equns.(lO), (14)~ (15), (16) 
& (19). Hence the form of implication used is not that of PC which, when 
fuzzified, gives counter-intuitive results. This is not really surprising 
in that there are philosophical objections to the implication of PC as an 
explication of tlif ••• then" in ordinary language. Lukasiewicz originally 
developed his logic in 3-valued form to allow for the status of future 
contingent propositions~ and later extended it to have the semantics of a 
llrodal" logic. 

5 Conclusions and Background References 

The classical formal logics such as PC may be seen as expressing 
idealized, precise 'reasoning', such as that of the digital computer at a 
hardware logic level. AI research may be seen as an attempt to replicate 
the less formal linguistic reasoning with vague and imprecise rules and 
data, actually adopted by human beings. This is not in itself a new 
problem - in "A System of Logic" published in 1843, John Stuart Mill commences 
with the remark: 

"Since reasoning, or inference, the principal subject of logic, is an 
operation which usually takes place by means of words, and in complicated 
cases can take place in no other way: those who have not a thorough insight 
into both the signification and purpose of words, will be under chances, 
amounting almost to certainty t of reasoning or inferring incorrectly". 

(The rest of this fascinating book is also worth reading - there are few 
problems of knowledge and its acquisition about which ~1ill has no perceptive 
comments - it is a pity that he did not have access to a PDPIO ~). He 
criticizes the weakness of formal logic in explicating linguistic reasoning 
but, like most work since, attempts to bridge the gap linguistically rather 
than develop a new basis in logic. Zadeh's use of fuzzy logic to model 
natural linguistic reasoning may be viewed as a more direct response to 
Mill's argument above some 130 years late!:". 

Apart from papers so far reference, I would recommend anyone 
interested in this area to have at hand: Rescher's (1969) book on multi­
valued logics; Snyder's (19?1) book on modal logics as an introduction and 
Hughes & Creswell (1968) as a reference; Creswell's (1973) book on logic 
and language as an alternative modern approach to linguistic semantics; 
Fillmore & Langendoen (1971) and Hockney et al (1975) as basic references 
on the same; and Krantz et al (1971) for alternative approaches to partially 
qualitative description. McCarthy & Hayes (1969) is well worth reading 
first, followed by Lakoff (1973) and any (or all !) the Zadeh references. 

Having quoted so many eminent authorities I may as well end with a 
quote from the most venerable of them all - Lazarus Long, the senior, was 
over 1,000 years old when he wrote: 



"The difference between science and the fuzzy subjects is that science 
requires reasoning, whilst those other subjects merely require scholarship" 
(R. Heinlein, "Time Enough for Love", NEL 1974). 

Hopefully the direction of the work described in these notes indicates 
that the scholarship of multi valued logic has a part to play in the science 
of reasoning about (rather fuzzy) human linguistic behaviour! 
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· \'lHY FUZZY REASONING f 

B .R. Gaines 

Man Machine Systems Laboratory, University of Essex, Colchester, U.K. 

1 Background 

The topics of "fuzzy logic" and "fuzzy reasoning" are not clear-cut 

subject areas with well-defined results and track records. Instead they 

represent a wealth of recent activity on an international front that may be 

seen to have its technical roots in philosophical and mathematical studies 

of "multi-valued logics" (Rescher 1969) and "vague reasoning" (Machina 

1974), but which owes much of its present impetus to engineering interest 

from those concerned with "information systems" (see Sanford 1975 for some 

wry comments on this "engineering interest" in a philosophical journal). 

Much of the current literature on fuzzy logic is neither precise in 

its objectives nor accurate in its conclusions. Much of the current effort 

duplicates activities taking place, or having taken place, elsewhere. 

However, this is of the nature of a fast growing subject area - it makes it 

difficult, however, for the newcomer to assimilate the (literally hundreds) 

of papers of recent years and assess the results, neither dismissing them 

because of his contact with the trivial, nor believing the exaggerated 

claims of enthusiasts. 

This seminar is intended to introduce this area, relate it to other 

subject areas concerned with reasoning and decision-making, and give pointers 

to the most useful literature and areas of development. 

These notes are complementary to those on "Multi-Valued Logic and 

Fuzzy Reasoning" for the AISB Summer School (Gaines 1975), which gives a 

technical summary and literature references.' I will only emphasize again 

that it is worthwhile commencing with Zadeh's papers and the more 

"philosophical" and "linguistic" literature that emphasizes the motivation 

behind the study of fuzzy reasoning rather than the more technical aspects 

of "fuzzy logic". 
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2 Basic Problems of Knowledge and Prediction 

Because of the fuzzy nature of the subject area I feel one should go 

back to some fundamental considerations. These have massive and ancient 

philosophical roots. However, they are also of direct practical relevance -

whenever we attempt to implement, for example, a management information 

system that does more than store and reproduce the data fed to it, to make 

inferences or estimate trends, we are involved in. basic problems of 

knowlecige whose "solution" entails assumptions - if we become concerned with 

the nature and reasonableness of these assumptions then we very rapidly come 

to face problems that have been the subject of philosophical debate for all 

recorded time. 

However, our own attitudes to these problems have probably been 

formed in the light of the past century of the growth of science and the 

success of technology based on it. This places great emphasis on precise 

physical laws framed in terms of relations between numeric quantities. It 

has little use for human opinion and belief, and its development through 

verbal qualitative reasoning. Thus, when faced with problems of aiding the 

manager in decision-making we automatically fall back on probability theory 

based on measure theory and the observation of frequencies. This is not 

necessarily a natural tool in which to formulate the decision processes used 

by human beings. Work on fuzzy reasoning is best seen as stimulated by the 

quest for more natural tools in which to develop information systems that 

interface naturally with the human reasoning process. 

2.1 Induction and Prediction 

The purpose of reasoning is to draw inferences from established 

premises. It used to be thought meaningful to make a clear distinction 

between deductive reasoning in which the conclusions were logically 

derivable from the premises (and hence had no more content than them, were 

in essence a re-formulation), and inductive reasoning in which the 

conclusions involved an alogical inductive "leap" or generalization - the 

former was mathematically rigorous and the latter metaphysically dubious. 

Tnis distinction attained its strongest form with Hume's (Popper 1972) 

(irrefutable) proof that the process of inductive reasoning cannot itself 

be proven valid. 

This result may be seen as undermining any possible foundations of 
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"science", and has naturally generated an immense effort among philosophers 

of science (such as Carnap (Carnap and Jeffrey 1971), Popper (1972), 

Lakatos (Lakatos and Musgrave 1970), Feyerabend (1975), Hesse (1974) and 

Gellner (1974» to determine what are the foundations of science and to 

give them whatever lesser rigour Hume's result still permits. The relevant 

literature on the problem of induction (Katz 1962), confirmation theory 

(Swinburne 1973, Rescher 1973) and scientific inference (Hesse 1974) is 

important to anyone developping information systems. However, they will 

be disappointed at the strength of the negative results and the paucity of 

positive methodology. 

More recently doubt has been thrown on the strength of deductive 

inference (Dummett 1973). Firstly, the whole concept of an established 

premise is extremely dubious. Even "raw observation" seems always to 

entail inductive reasoning - we cannot perceive or measure without 

unverifiable assumptions. Secondly, the uniqueness and absoluteness of 

classical logics (propositional and predicate calculi) has been increasingly 

challenged with increasing success (Haack 1974). In recent years the 

rigorous development of modal logics (Snyder 1971), the weakness of the 

classical logical foundations of quantum physics (Mehra 1973), the success 

of alternative logical calculi as foundations of mathematics (Mostowski 

1966), and, probably also, the obvious poverty and weakness of our whole 

knowledge of knowledge, its acquisition and use, as demonstrated by the 

attempts to use it operationally in artificial intelligence systems - all 

have weakened the position of classical deductive reasoning. 

3 Human Reasoning 

Once we realize that any form of predictive inference involves 

alogical and unverifiable assumptions, that all premises have inherent 

vagueness if not some element of falsity, and that our process of reasoning, 

having papered over these basic flaws, is itself somewhat arbitrary, we 

must begin to wonder how anything is possible (or decide that in fact any­

thing is possible - a perfectly tenable position if somewhat devastating 

for systems engineeringt). 

One natural way out is a form of pragmatism - "valid reasoning is 

what works". This is the argument that Hume proved circular - however, as 

Katz (1962) has argued, there is a difference between (logical) validation 
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and (pragmatic) vindication. We may, for example, give various evolutionary 

arguments as to why creatures with brains whose reasoning is like our own 

have survived in this physical environment (what we cannot justify is the 

supposition that they will continue to do so - however. it seems reasonable 

to act as if this were so - at the utmost level of despair permitted to a 

working engineer one may operate under the motto of William the Silent. 

"It is not necessary to hope in order to act, or to succeed in order to 

persevere" !). 

In the light of these strong undercurrents mining away the philo­

sophical and methodological foundations of science, it is not surprising 

that one of the main pragmatic models of successful reasoning that is being 

examined is man himself. The last hundred years of scientific and 

commercial success of physical and mechanist science gave great hopes that 

such science would lead to a complete account of biological processes. 

including all aspects of the human brain and its reasoning capabilities. 

One would not look to the human mind as a model of inference processes -

the precision and exactness of formal logical deduction are foreign to the 

forgetful, inexact, wandering human mind. Perhaps, conversely, creative 

and original thought was foreign to the precision of the digital computer, 

but the judicious introduction of "noise" might achieve it without 

necessarily introducing the basic weaknesses of the brain. 

We would not nowadays wish to return to a position where the brain 

was regarded as having a vitalist component beyond our knowledge, nor the 

computer regarded as pre-programmed in every respect and thus incapable of 

the emulation of "creativity". We are making too much progress in under­

standing, emulating and collaborating with human reasoning to feel the need 

to invoke magic, and no-one who has retrieved interactively from a natural 

language data base system which has also interacted with other users (and 

contains data resulting from those interactions> could deny the creativity 

of some computer systems (constructive novelty is essentially always 

relative to the percipient - ~ are the ones who recognize innovation and 

what it is reflects upon both observer and observed). 

However, there is an increasingly healthy respect for human reasoning 

that begins to recognize the problems of inferencing from unreliable, incon­

sistent and vague premises to conclusions that form the basis for action. 
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Perhaps forgetting, inexactness, and search for analogies, are not defects 

of a weak deductive system but instead essential features of a powerful 

inductive system (those who see this as the obvious position anyway should 

introspect a little more deeply and ask eVen if they believe it superficially 

do they actually act on it in systems engineering - we have been indoctrin­

ated to believe in the superiority of numbers and exact operations to names 

and qualitative operations - this affects many design decisions - for 

example, we generally require far more precision of expression by the 

computer user than is necessary - we are surprised that alphabetic nameS 

can just as well be entered on a lO-key telephone dialler (with 2.6 to 1 

vagueness) as on a teleprinter - we trust numerical approximations to reality 

and our manipulations of them far more than any direct verbal logic). 

An interest in human (verbal) reasoning processes is not new - Plato 

and Aristotle had a lot to say that is still very fresh today. The modal 

logicians studying our USe of terms such as "possible" and "necessary" 

(Snyder 1971), IIsometimes" and "always" (Prior 1967), "a few" and llmany" 

(Altham 1971), and so on have essentially modelled the reasoning processes 

of which these terms are major components. Both modal logic and 

linguistics have made great progress in this direction in recent years 

(Creswell 1973, Fillmore and Langendoen 1971, Hockney, Harper and Freed 

1975). The technical development of fuzzy logic and fuzzy reasoning may 

be seen as providing enhanced mathematical tools for the study and emulation 

of human verbal reasoning, logics which carry both factual information are 

estimates of its reliability. Probably more important than any single 

technical development however is the motivation behind the surge of 

engineering interest in such logics - it has brought together many workers 

on diverse forms of information systems in the common realization that there 

are substantial gaps in our knowledge of knowledge that are being filled ad 

hoc in many practical systems and which need, and can sustain, far greater 

coherent development. 
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RESEARCH NOTES ON FUZZY REASONING 
B.R.Gaines 

(1) Fuzzy Logic and Fuzzy Reasoning 

There appears to be an important gap between the so-called "fuzzy 

logicstl studied by many authors (e.g. Lee 1972 - JACM, Bellman and Giertz 

1973 t Inf. Sc.) and the llfuzzy reasoningll developed. by Zadeh (Berkeley 

reports) which is not noted in the literature. The standard "fuzzy logic" 

is just a multi-valued logic of the family described by Rescher (1969 book). 

Most authors probably regard it as conjunction/disjunction/negation derived 

from fuzzy set membership considerations completely analogous to the 

derivation of Boolean algebra from classical set theory. Five points seem 

to have been missed: 

(1.1) The definition of implication is open - it is not determined by the 

other connectives. For example, the natural definition of negation in 

terms of implication: 

Def. A A~F 

gives "fuzzy negation" (u(A) :: l-u(A» for both VSS implication 

(u(A::>B) :: max(l-u(A), u(B») and Lukasiewicz implication 

(u(A::>B) :: min(l, l-u(A)+u(B». 

Question 1 How many of Rescher's (see also Rosser and Turquette et all 

logics have (or, if non-truth-functional, can be restricted to have) the 

fuzzy logic basic connectives ? 

Question 2 What is the status of fuzzy negation, e.g. c.f. Gadel negation? 

(1.2) Some authors do not even consider implication - Lee assumes the PC 

definition: 

Def. A::> B A vB 

without making this explicit. This then leads to the semantic inconsistency 

he notes for the relative magnitudes of the terms, but he does not follow 

this up to conclude that his definition is wrong, presumably because he does 

not realize he has one. 

Question 3 What are the minimal semantic constraints upon the implication 

connective (see Carnap et al on confirmation theory) ? 

(1.3) The Itfuzzy logic" generally considered may be derived as the 

fuzzification of PC. This does not seem to have been stated explicitly 

but is probably folk lore. Such a derivation is more in the spirit of the 

general application of fuzzification to other mathematical structures. 



(1.4) Fuzzified PC is precisely the variant standard system (VSS) described 

by Rescher (attributed to ?). 

Question 4 can other MY logics be derived as fuzzifications - e.g. 

Lukasiewicz am. Godel (I doubt it: if not there may be some relationship 

to Dugundji's results on finite matrices) ? 

(1.5) Zadeh himself does not seem to have put forward fuzzified PC (or 

rejected it because of the weakness of its implication connective ?). Fuzzy 

reasoning is primarily concerned with statements about fuzzy attributes -

one possible attribute is a truth value. When Zadeh considers the truth 

value attribute he fuzzifies Lukasiewicz MV logic not PC. 

Question 5 Why choose Lukasiewicz logic (Zadeh does not seem to give a 

justification) ? 

(2) Fuzzified Lukasiewicz Logic (LL) 

The similarity between the fuzzy set operations on degrees of 

membership and the LL basic connectives needs investigation (Quest. 4 and 5). 

There are semantic constraints upon the form of function that maps degree 

of membership onto truth value. These constraints should be made explicit. 

The logic without the constraints offers an apparent freedom that should be 

removed - this will itself lead to a different formulation. 

Question 6 Given a family of functions on the unit interval (truth value ~ 

membership) and the operations of fuzzy sets theory and LL (or various sub­

sets) what is the space of functions generated (and the converse of deriving 

a basis for a given space given the operations) ? 

Question 7 What are the semantic constraints upon a basis ? 

(3) Interaction of Truth Values with Fuzzy Statements 

We may apply (essentially metalinguistic 1) statements about fuzzy 

truth values to statements about fuzzy attributes and there is the possibility 

of interplay between them. For example t what is the relationship between 

'John is tall is very true' and 'John is very tall is true', or 'Mary is fat 

is more or less true' and 'Mary is more or less fat'. There is scope for 

interplay but no obvious rule. Notes: 

(3.1) One must beware of unnatural examples and watch for the possibility 

of mUltiple interpretations - e.g. it does not seem to be meaningful to 

consider statements such as tJohn is tall is .7 true't and 'John is tall is 



very true' could mean that he is so tall no one could disagree (in which 

case 'very tall' assumes a higher truth value) or that he is precisely tall, 

neither 'more or less tall', nor 'very tall' (in which case 'very tall' 

will assume a lower truth value). 

(3.2) Ambiguities can only be resolved by accepting that the role of 

language is communication and that the same statement may have entirely 

different meanings fOr different recipients. The use of this feature of 

language is itself a major linguistic skill <essential to politicians). 

(3.3) Our usage of words such as 'truth' and 'false' may be more related to 

'reasonableness' and 'unreasonableness' than logical truth, i.e. a statement 

is very true because it is a reasonable way of expressing something that 

will create a very true impression of the state of affairs in the mind of 

the recipient. Thus 'John is tall is very true' would mean that it is the 

most reasonable statement to make about John's height. If he turns out to 

be 7 foot tall, you say 'but he is extremely tall, very very tall' and feel 

that you have been misled, i.e. 'John is tall' is 'not very true', but 

'John is extremely tall' is very true. 

This model of our use of the linguistic terms true and false in the 

metalinguistic context (i.e. about other statements) as relating to the 

communication of a true impression is a useful one, probably widely valid. 

It resolves the conflict between a direct interpretation of degrees of 

membership as degrees of truth - where 'John is very tall' makes 'John is 

tall' very true ~ and what seems to be the more conventional use of state­

ments about truth and falsity in colloquial language. It also emphasizes 

that the analysis of linguistic interactions must be in a context of inter­

personal communication, not isolated fragments. 

(3.4) The use of linguistic hedges is not on~y to modify meaning but also 

to convey the level of precision. 'John is tall', 'John is more or less 

tall', 'John is pretty well tall', 'I think it is very true to say that John 

is tall', all convey the same expectation of height but varying degrees of 

possible spread about it. This is why a single truth value cannot express 

the full semantics of a vague statement. 

{4} Linguistic Approximation Stable Fuzzy Arguments 

Zadeh's concept of linguistic approximation (LA) introduces an 

element of discontinuity into the fuzzy reasoning process. LA arises 

basically because the numerical manipulations of fuzzy predicates corresponding 



to linguistic hedges and logical operations can generate a result that 

cannot be represented exactly as a simply hedged linguistic truth-value -

it can only be approximated by one. The effect is similar to that of 
quantization in analog-digital conve~sion and gene~ates simil~ p~Oblems, 

i.e. it cannot be treated effectively as "noise", introduces its own 

coloration, and gives rise to new phenomena such as limit cycles. 

The importance of linguistic approximation to a theory of fuzzy 

reasoning seems to have been missed despite the emphasis Zadeh places upon 

it. Without it any form of fuzzy logic is a variant of some formal multi­

valued logic and (whilst again the fact that Zadeh uses a fuzzified 

Lukasiewicz logic rather than fuzzified PC seems to have been little-noted) 

it is presumably open to axiomatization and probably to reduction to some 

known structure. 

With LA fuzzy logic has new properties,for example that a long 

chain of reasoning that is logically equivalent to a shorter chain will 

produce less sharp results in general. 

Several questions are apparent: 

Question 8 What class of operation on fuzzy variables leads to a finite 

set of values? - a purely technical point reducing the need for LA. 

Question 9 Does LA account for the weakness in long chains of reasoning ? 

We may introduce the concept of a stable fuzzy argument which is 

such that if.LA is applied at all or any points in the chain of reasoning 

the LA to the final result is unchanged. This introduces the concept of 

a linguistic confluence set - the set of all possible results of a chain of 

fuzzy reasoning when LA is applied in all possible ways. 

The following results are obvious: (a) the longer the chain of 

argument the less stable it will be; (b) the greater the range of LA's 

available the more stable it will be - this corresponds to the eskimos ~O 

names for ice, the skilled practitioner's use of longer chains of argument, 

etc. 

LA introduces tolerance relations on the space of functions over an 

interval. Can we take the logic and tolerance relation and treat it as a 

new logic '? 



(5) Fuzzified Definitions of System Concepts 

It should be possible to re-develop such concepts as stability, 

adaptivity and state within a framework of fuzzy reasoning. Some of the 

arbitrariness in current definitions should be absorbed into the fuzziness 

rather than left as firm but undefined decisions. The semantic constraints 

that mean that decisions are not completely arbitrary will appear as the 

order relations on fuzzy values. 

( 6) The Role of t he Numbers 

How much of the theory of fuzzy reasoning can be developed in 

terms of order relations on degrees of membership rather than truth values. 

I doubt that this has been studied in the light of Zadeh's semantics for 

fuzzy reasoning, e.g. with fuzzified LL. 

Linguistic Approximation in an order structure would give a tolerance 

leading to a non-truth-functional logic. This seems a very natural 

structure that is worth developing. 

These notes were based on discussions with Lotfi Zadeh at 
Berkeley in I,1ay 1975. 
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Summary 

, 
In many cases a-human operator is far more succesful 

at controlling a complex industrial process ~han any 

controller derived using modern control techniques. 
-- ~ 

The method of expressing t~e strategy of a human o~e-

rator using fuzzy set th~ory has been proposed else­

where. In this study this method is applied to the control 

of a warm water plant. Fuzzy algorithms based on 'lin­

gu~stic rules describing the operator's control strategy 

are constructed to control this plant. Several types of 

such algorithms are implemented and cOffi~ared with. each 

·other, in behaviour as well as in structure. 

" 



1 Introduction 

Fuzzy set theory is a theory about vagueness, uncertainty 

enabling one to use nonprecise, ill-defined concepts and 

yet work with them in a mathematically strict sense [11. 
Automatic Control theory has developed in the last decades 

fron~ an emperically oriented technique into a strongly 

mathematically orientated rigid technique, requiring pre­

cision, well defined concepts and exact data. Nevertheless 

vagueness and subjectivity still play a role as is pointed 

out further below. 

The introduction of .the stability investigation approach by I 

means of frequency diagrams ( Nyquist, Nichols, Bode) 

created an exact method, the design criteria hO'Vlever 

remain vague and subjective. No definitive answer can be. 

given as to what gain and phase margin, maximum relative 

error etc. have to be chosen to achieve a "good" system 

performance. The big spread of these criteria to be found 'Vlith, 

several authors, dependant on their personal views and 

experience is thus not surprising. Hence the introduction 

of different criteria like that of Ziegler and Nichols. The 

root locus method of Evans suffers from this same ambiguity 

as no exact values for the damping factors exist. The intro­

duction of the integral error criteria was a step fon;rards 

in the exact determination of the optimal system, but in 

fact the vagueness here has been shifted to the choice of 

a particular criterion. The use of more complex performance 

criteria enables the incorporation of'~everal desired 

factors in the optimisation. The.decision as to which 
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factors have to be accounted for and to what extent, is 

still subjective. Thus, notwithstanding the creation of 

numerouR Ina.thematical control techniques, the final deci-

sion about the "goodness" of a system's behaviour remains 

a personal, subjective task. Under the surface of modern 

control techniques subjectivity, vagueness ~ perhabs 

unconsciously ~ still does play a role. .Furthermore, 

in non-engeneering systems, the so-called "soft systems" 

subjective matters are almost predominant. A theory of 

vagueness would be very useful here, to put it mildly ( 2]; 

Apart from this kind of general rationale of the incorpora 

tion of vagueness in system's design, there is a much more 

practical reason for -the particular kind of 'fuzzy control 

system used in this research. Complex industrial plants 

such as chem~ical reaction processes often are difficult 

to control automatically. In some cases plant models can be 

derived from the underlying physical or chemical proper-

ties of the process, but it is well known that this re-

quires very complicated calculations, and that even under 

various approximations the final model often is very 

difficult, of high order, non-linear, time vatying etc. 

The method of parameter estimation to obtain a purely 

mathematically described behavioristic model may also 

require a very elaborate computation. When nonlinearity, 

time variance and stochastic disturbances have an impor-

tant effect, modelling methods become still more compli-

cated. Control theory however relies on modelling as an 

important step in the design process'. 
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However it is interesting to note that in many cases the 

control of a process by a human operator is far more succes­

ful than any such automatic control. Hence it seems use-

ful to investigate the control policy of the operator. As 

the strategy he uses is vague and qualitatively described, 

the use of fuzzy set theory in such an investigation is 

self evident. This was also the rationale behind the "fuzzy 

logic controller" recently reported by Mamdani and Assilian (3 ] • 

In what was the first real control application of fuzzy set 

theory, they achieved a succesful control of a small 

boiler-steam engine combination, better even than a conven-

tional DDC controller. The present work follows the same 

idea of using fuzzy rules as a control algorithm. 

'A warm water plant which had difficult control prope~ties 

.such as nonlinearity and variability, has been controlled 

. by a fuzzy algorithm based on. the experience of a human 

operator. From a set of linguistic rules which describe the 

operator's control strategy a control algorithm is constructed 

where fuzzy sets __ define the words used. Several types of such 

an - algorithm are implemented and compared with each other, 

in behaviour as well as in structure. An alternative algo-

rithm - mathematically equivalent to the other - is proposed 

to speed up the computation (4]. 



2 The Fuzzy Linguistic Control 

The development of the theory of fuzzy sets and algorithms [ 5 ] 

makes it possible to build a control algorithm based on a very 

conunon kind of inexact information, namely information expressed 

in natural language. This linguistic information may be obtained 

from an experienced human process operator. This is done by 

demanding a qualitative description in his own words of the 

control strategy he uses and how he reacts in a situation. Thus 

the operator may be able to express his control strategy as a 

set of linguistic decision rules of the form: 

if "increase in temperature is big" then "decrease pressure 

a lot" , else, if "increase in temperature is low" then 

"decrease pressure a little" , else, etc. 

Clearly such expressions can be described as fuzzy sets on the 

universes of discourse "increase in temperature" and "decrease 

of pressure", respectively. Thus by defining the appropriate 

fuzzy sets and translating the rules as fuzzy implications of 

the form: if A then B, as functions of those fuzzy sets ( A and 

B), the hlli~an control strategy can be converted into a control 

algorithm and implemented on a computer as outlined below. ( In 

the appendix the precise mathematical derivation of the fuzzy 

control algorithm is presented. Here a less formal outline of the 

method will be given.) 

Basic to the whole approach is the fuzzy implication ( rule ) 

if A then B 
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where A and B are fuzzy sets, like "high temperature", "small 

pressure", on the universes of discourse input and output res-

pectively. Considering this rule as a kind of equivalent of a 

system mapping the next question is: what will the output be to 

a certain input A' ? In other words, given the rule: if A then 

B, and the input A', what will be the output Bf ? An expression 

for this is derived using the compositional rule of inference 

[ 5 ] in the appendix. 

The next stage is the observation that the control algorithm 

clearly is composed of several rules; in different situations the 

human operator will apply different actionso The algorithm will 

have a form like 

if Al the B1 ' else, if A2 then S.2 ' alse c •••• 

This set of rules will be evaluated by identifying the "else" 

connective as the union operator between fuzzy sets. The rules can 

be evaluated seperately and the results are combined using the 

max operator. Thus given a certain input A' resulting in an 

output of the first rule: B1' , of the second rule: B' , etc , . . 2 • 

the resulting overall fuzzy output B' will be: 

.. ' 
B' ~ max ( Bi ' Bi ' ...... ) 

The extension of this single-input-single-output type to a more 

complex form of system having e.g. two inputs and one output 

with rules like 

1f A then ( if B then C ) 



1s a straightforwi?rd one. The same approach still applies ( see 

appendix) • 

Ili the particular kind of application of this system concept 

to a process controller the input to the controller - temperature 

error - and the output of the controller - process input: flow -

were both non fuzzy, deterministic values. The approach to cope 

with a non fuzzy input is explained in the appendix in two 

different ways and is quite straigtforward. The result of evalu­

ating .the fuzzy algorithm for a particular deterministic input 

is still a fuzzy output set ranging over the whole possible set 

of outputs. In order to obtain one deterministic output value 

from this fuzzy output set. a decision procedure has to be adop­

ted to make a choice as to which particular ( non fuzzy ) value 

is a good representative of the fuzzy set. The decision proce­

dure applied here is to take that output value at which the 

membership function is maximal ( see appendix ) 0 

2.1 The Process 

This fuzzy system concept has been applied to design a control­

ler for the temperature of a warm water plant, built on a labo­

ratory scale. Figure 1 shows a schematic diagram of the plant. 

the warm water tank is divided into several compartments. The 

cold water stream enters the tank with a variable flow F2, passes 

the compartments in sequence and leaves the tank in the last 

compartment. This water is heated by a heat exchange unit in 

which hot water ( at about 900 centigrade ) flows with a variable 

flow FI. The aim is to control the temperature of the water in 

one of the compartments f.or different temperatures and steady 



state values of the' flow F2 by adjusting the dynamic values 

of Fl and F2. In this application the temperature of the water 

leaving the heating compartment has been controlled to mini-

mize time delay problems. Usually a constant amount of liquid 

(i.e. water ) of a certain temperature is required from the 

process, so the flow F2 has to be kept constant during steady 
.. 

state. Only during a change to another desired temperature the 

flow F2'can be changed, the main control variable however, is 

flow Fl of the hot water. 

Earlier investigations of the process had shown that this 

process had difficult control properties, arising out of non­

·linearities, assymetric behaviour for heating and cooling, noise 

and dead time. Also the alnbient temperature influences the 

process behaviour. To get a comparative idea of the performance 
.. 

of the fuzzy controllers an ordinary PI-controller has been im-

plemented as well. This PI-controller has been optimally adjus­

ted for an experimentally fitted model consisting of two equal' 

time constants and time delay ( time delay = 10 sec, time con­

stants = 40 sec ). The optimal values of the integral gain KI 

and the proportional gain Kp for three different integral error 

criteria, the ITAE, IAE and the lSE, of this digital PI-control-

ler are shown in table 1. 

TABLE 1 . 

ITAE ISE IAE 

0.018 0.019 0.020 

1.35 3.02 1.94 

Optimal KI and Kp .. :: values for a digital PI-controller 

I ~Rmn'p ~imp 1 sec) 
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One of the main dif!iculties of this controller was its need 

of adjustments to operate over a wide range of desired te~pera­

tures. It is clear that a more sophisticated controller ( sto-

chastic model, adaptive) than just a PI type would have a better 

performance. Hence the comparison between the PI control and 

"fuzzy control" should be regarded as only a rough indication 

of relative performance. 

2.2 The Algorithm 

The described fuzzy controller resulted in the following 

algorithm: 

Every rule i associates a fuzzy flow (fl) subset to a fuzzy 

temperature (t) subset, represented by their membership func­

tions: 

Pi(t) -+ "l(fl) i = 1,2,3, 000 , I 

The actual action applied, flO' can be computed from the measured 

temperature to as follows. 

The membership values at the temperature to are determined 

for each rule 

The implied fuzzy subsets for the flow fl have a membership 

function A that can be calculated for each rule as 

i =: 1, 2, .•• , I 

The overall fuzzy subset for flow is obtained by using the "or" 



statement 

Vi (fl)] i = I, 2, ••. , I 

The result is a fuzzy subset which ranges over all values of the 

flo\<1. As the action is taken at the maximum value of the member- ",:;. 

ship function of this fuzzy subset, it can be determined direct-

ly by taking' that value of the flO\.,. £10 , for which the following 

holds 

max max min 
fl i 

3 The Fuzzy Controllers 

3.1 The Fuzzy Sets 

i v','(fl)] 
~ . i = I, 2, .. , I 

, 

The fuzzy sets used in this application were of a con~inuous 

form. An uniform structure of the membership function for all 

fuzzy sets was chosen, namely the continuous function 

~(x) = ( 1 + (a(x-c})b }-l 

( see figure 2). This choice has the advantage that the 'desired 

shape of the fuzzy set can be adapted by just three parameters : 

c alters the point of minimum fuzziness ( 11=1 ), a the spread 

and b the contrast. Because the decision procedure would become 

too time-consuming in the continuous case, the fuzzy output 

sets were calculated at finite quanti zed intervals of the support 

set ( flow). The definitions of the fuzzy sets used are shown 

in table 2. Flis quanti zed in 12 le'vels, dFl in 15 and F2 in 18. 
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x: temperature error, dx: change in error, Fl: warm water flow, 

dFl: change in Fl, F2: cold water flowc 

NAME 

not small 

smqll 

very small 

SUPPORT SET 

x 

x 

x 

HEBBERSHIP FUNCTION 

1 - (I+O.Sx)-l 

(1+0. Sx)-l 

(l+x4) -1 

slightly small 

small 

medium small 

x 

x 

x 

(1+0. 5x) -1 for x ~ 1 else O. t 

(1+(3(x-l})2)-1 

(1+{3(X-O.S})2)-1 

extremely small 

small 

medium 
-

big 

very big 

. very small 

near st. state 

very near st.state 

small 

medium 

big 

very big 

very small 

x 

dx 

dx 

ex 

Fl 

FI 

Fl' 

Fl' 

dF1 

dF1 

dFI 

F2 

F2 

(1+ (3x) 2) -1 

(1+ (3dx) 2) -1 

{1+(3(dX-O.S)}2)-1 

(1+(dx-2) 2)-1 

(1+2(Fl-12)2)-1 

(1+2 (Fl) 2) -I' 

(1~(3(Fli-l»2)-1 

(1+(3{Fl ' -O.S»2)-1 

(1+(2(dFl-O.2»2)-1 

(1+(2(dFl-l»2)-1 

(1+(dFl-3) 2)-1 

(1+2 (F2-18) 2) -1 

(1+2 (F2-l) 2}-1 
_______ ._. __ . ____ ._. ___ -'--_ .... ----------L-----------------

TABLE 2 Definitions of the Fuzzy Sets used 

. 



3.2 Heuristic Structure 

Whereas in [3] just c;me fuzzy control algorithm has been applied 

to a real dynamic process with succes, in this research three 

types of such fuzzy algorithms have been tested. In stead of 

asserting one fixed structure of the human operator's control 

heuristics, namely that a process operator generally uses error 

and rate of change of error to calculate a change in the value 

of the process input, several different heuristics have been 

applied. The reason for this was the fact that one part of the 

control - keeping the temperature accurately at a desired value -

appeared to be difficult for a human controller. It was extre­

mely difficult to avoid oscillations around the setpoint. Hence 

three strategies for this II s teady state" control have been tested: 
, 

(1) the operator uses error and rate of change of error to affect 

a change of flow ( process input ). 

(2) the operator only uses the error as information and compen-

sates by changing the flow. 

(3) the operator uses error and adjusts the flow above or below 

neutral position. 

In this third strategy the controller was supposed to know what 

absolute value of the flow ( Fl ) was the steady state position, 

hence a static flow-temperature characteristic was assumed to 

be known. A summary of these three different strategies is given 

in table 3. 
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Observation Action 
.... 

strategy 1 error and change in flow FI 

change in error 

strategy 2 error change in flow FI 

:st~ategy 3 error flow Fl plus static 

fnformation -... 

TABLE 3 Control Heuristics 

Because the aim of the control was not only to keep the tempe-

rature accurately at a desired value, but also to perform step 

changes in temperature as fast as possible, the set point change 

strategy should obviously nave a kind of bang-bang character, 

both for flows FI and F2 ( the latter is only used during this 

change as stated earlier ). 

3.2 The Rules 

The first strategy resulted in the following set of rules 

if x "not small" then Fl livery big" 

then F2 "very small" 

if x "small" then Fl livery small" 

then F2 at steady state 

if x "very small" then F2 at steady state 

then if increase of x "small" then decrase of FI "small" 

then if increase of x"medium" t):1en decrease of Fl "medium" 

then if increase of x "big" then decrease of FI "big" . . . 
These are the five rules to control a temperature below setpoint 

- ------------
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while it is increasing. Apart from the second rule a completely 

symmetric set of rules 'VIas applied in the other cases. 

The second strategy was realized by t~e following rules 

if x "not small" then Fl "very big" 

then F2 "very small" 

if x "slightly small" then FI "very small" 

then F2 at steady state 

if x "small" . then increase of FI "big" 

then F2. at steady state 

. if x "medium small ll then increase of FI "medium" 

then F2 at staedy staue 

if x "extremely small" then increase of FI I·small" 

.. then F2at steady state 

The additional refinement of the "small" region required an 

appropriate modification of the previous fuzzy set "small tl 

( see table 2 ). 

The third strategy which has been applied consisted of the 

following set of rules 

if x "not small" then FI "very big U 

then F2 livery small tl 

if x II small fI then FI linear steady state" 

then F2 at steady state 

if x "very small ll then Fl "very near staedy state" 

then F2 at steady state 

Because the static flow-temperature characteristic was very 

sensitive to the environment, the algorithm was set up to 

enab-l-e alterations of this characteristic during running time. 



3.4 Results 

The overall results of these three types of controllers have 
. 

been summarized in table 4 and compared with a PI type control-

ler mentioned above. In view of the bang-bang rules it is not 

-! 
Controller Rise Time Overshoot Temp. Variations; 

I 

(minute) (centigrade) (centigrade) . -

classical PI type 0.7 min 1.50 0.40 

first fuzzy type 0.3 min less than var 1.50 . 

second fuzzy type 0.3 miil It 
.1.50 

: . 
third fuzzy type 0.3 min " 0.50 

''''TABLE 4 Performance of Different Controllers on a Step Response 

of 10 degrees centigrade. 

surprising that the systems with the fuzzy controllers all show 

much faster step responses than the classical PI type control 

system ( for a step of 100 centigrade about 0.3 minute against 

1.5 minute for the PI controller ). However the first two con-

trollers behaved like the human operator in that their accuracy 

was poor ( 1.50 centigrade oscillations around the setpoint 

against 0.40 for the PI controller ). The warm water process 

with the third type fuzzy controller showed the best performance. 

It combined the same high speed step response as the other fuzzy 

controllers ( 0.3 minute) with the same accuracy as that of the 

PI controller ( 0.50 variations ). 
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3.5 Discussion 5., I" 

A possible explanation of the better results of the last 

fuzzy controller type could be the additional information about 

the "neutral" .steady state flow position. The introduction 

of this steady state information has the disadvantage that 

the controller has to be readjusted for each different desi-

red temperature value. The sensitivity of these settings to 

changing surroundings is another problem. The fact that the 

actual readjustment of these settings during running time· 

was performed by the human operator indicates that a vague 

guess' of this steady state flow'value might be sufficient. 

However it:has to be realized that in some industrial pro-

'cesses even a guess of such steady state characteristics 

may be impossible. 

Another highly intuitive way of explaining the differences 

in behaviour of these three fuzzy controller3 could be to 

relate their structure to those of conventional controllers. 

Looking only at the "steady state." rules,. it can be obser-

ved that the inputs and output of the first type fuzzy control-

ler are similar to those of a PI type incremental control 

algorithmG The input-output quantities of the second type are 
. 

those of a purely I type incremental algorithm and finally 

the t~ird type has an input and output identical to those of 

a P type controller using a positional algorithm ( see table 

3 ). It should be emphasized that this supposed analogy 

laeks any rigid basis. The sort of combined bang-bang and 

"PI" nature makes an explanation of the results from only 

this second point of view even more doubtful. Clearly more 
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detailed study on such an analogy should therefore be done 

( and is currently being conducted ) before its conclusions 

are used to assess the accuracy and stablity. 

One observation which can definitively be made is that this 

kind of fuzzy control is very well suited for an easyimple-

mentation of a time optimal control. The calculation of a 

switching line for the bang-bang control of a noisy time 

delay system is extremely difficult and the simplicity of 

this fuzzy bang-bang control is therefore an important ad­

vantage. 

3. 6 Further Remark 

It is possible to speed up this fuzzy algorithm by using an 

alternative approach to decide at the beginning to which 

fuzzy temperature subset the measurement belongs~ This is 

interpreted as to mea~ the fuzzy subset where the measured 

point has the highest membership grade. This decision gives 

thus the rule number (\~o l at which 

Having determined this rule number, the appropriate calcu-

1ations are carried out for this rule only. The action is then 

taken at that flow flO at which 

max 
f1 

This method not only saves a considerable amount of computing 

time but also has a kind of intuitive app~al left. Its equi-



4 Conclusions 

A comparison has been made between the response of 

the system for the three different fuzzy controllers and 

with DDC controllers of a non fuzzy nature. The DDC 

controllers had a PI actioni the setting of this action 

was optimised a.ccording to the ISE-, IAE- and ITAE­

criteria on a linearised model. 

All the fuzzy controllers showed a faster step res­

ponse of the system than was possible with the DDC­

controllers. However, it was more difficult to get 

accurate control of the temperature ( see table 4 ). The 

simplest fuzzy controller, the third type, showed the 

best performance and .comb~ned a high sp~ed response with 

the same accuracy as that of the optimal DOe-controller. 

The other two fuzzy controllers showed a tendency to 

oscillations around the steady state value. 

It has been shown that the three different types of 

fuzzy controllers show some similarities with proportional 

nal and integral actions. Although the results of this 

preliminary research on fuzzy control are promising, the 

accuracy and stability problem needs to be ~nverstigated 

more deeply. This kind of fuzzy control is essentially 
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nonlinear but it is the way the particular control 

algorithm is derived which is the novelty and major 

contribution of this method based on fuzzy set theory. 

The easy way of implementing the experience of a human 

operator in the controller makes the application of 

fuzzy linguistic rules attract~ve for those processes 

that are already controlled by operators. This"is par­

ticularly true in cases where automatic control follo­

wing the usual methods requires time consuming and 

complex modelling and control methods. 
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F Appendix Fuzzy Systems 

A fuzzy subset A of a universe of discourse ( support set ) 

X is characterised by a membership function ~A(x). This 

function assigns to each element x £ X a number ~A(x) 

in the closed interval [0(1) , which represents the grade 

of membership of x in A [51. Three basic operators used in 

fuzzy set theory are defined as follows: 

(a) The union of the fuzzy subsets A and B qf the universe of 

discourse X is a fuzzy subset, denoted A U B, with a 

membership function defined by 

The union corresponds to the connective "OR". 

(b) The intersection of thefnzzy subsets A and B is a fuzzy 

subset,· denoted A n B, With a membership function defi":,, 

ned by 

X £ X 

The intersection corresponds to the connective "AND". 

(c) The complement of a fuzzy subset A is a fuzzy subset, 

denoted .A, with a membership function defined by 

.. 
1l -. A (x) = 1 - II A (x 1 X £ X 

Complementation corresponds to negation "NOT". 

The definition of a fuzzy set enables us to deal with the 

information contained in the experience of a human operator. 



~. 6 /71 

For instance linguistic expressions, such as the flow 1s 

Itbig", "medium" I "small I., "not big", etc. clearly are fuzzy 

subsets of the universe of discourse "flow". 

Furthermore to represent in a fuzzy way the concept of a 

system mapping from an input to an output set, the concept 

of a fuzzy conditional statement ( implication ) is intro­

duced. The system is described as a set of fuzzy conditio-

nal statements of the form 

if "input is big" then "output is medium" 

The membership function corresponding to a fuzzy conditio­

nal statement S: if A'then Br given the fuzzy subset A of 
.. 

. the universe of discou'rse X, and the fuzzy subset B of Y t 

is defined by r 5] 

The complete system is described by a set of such fuzzy 
• 

1mplications* e.g. 

if "input is big" then "output is medium" 

or ( else .) 

if ninput is medium" then "output is small" 

Using the above metioned definition of the "or" connective 

(1) 

the final fuzzy implication S composed of two implications: 

if Al then Bl or (else) if A2 then B2 ' pas the membership 

function 
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llS (y/x) = max[min [PA (x); ~B (y)] ;minr~ A (x); lJ B ' {y>]l (2) 
1 1 2 2 j 

This can be extended to the case of more than two rule state-

ments. 

Having defined the relation between fuzzy subsets, the next 

step is to calculate the infered fuzzy subset, given a cer-

tain implicand fuzzy subset. Knowing the rule: if "input is 

big" then "output .is medium" the question arises what will 

be the output when the 11 input is very big If? For this, the 

following compositional rule of inference is used. Given a 

fuzzy implication S: if A then B, the fuzzy subset B', in­

fered from a given· fuz.zy :i:-npot ·set A· (A and A' fuzzy 

suf)s'ets of X, Band Bt of Y L, has a membership function 

defined by [ 51 

. llB'(Y} = max min [~At (x, i }ls(Y,xl] 
x 

. (3) 

The input. to the system in this control appiication was 

CQn.~'i,-qered to Ire preci.se, not fuzzy. There is no fuzzy 

input, hence there is no need to apply the compositional 

rule of inference. Using the intuitive meaning of a fuzzy 

implication: if A then B, the implied output can never 

achieve a higher degree of truth than that of the implying 

input. That would be contrary to the nature of an implica­

tion. Hence one obtains the fuzzy output B up to the degree 

of membership of the measured value Xo in the fuzzy input A. 

~his g~ves the fuzzy output set 
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l1B I (Y) = min r llA (xo) i lIB (y) ] = 

An alternative way to obtain the same result is to interpret 
. 

this input Xo ~s a "fuzzy" input set A' with all memhership 

values lIAt (x) equal to zero, except the value at the mea­

sured point llA' (xo ) which is equal to one. Equation (3) 

- the compositional rule of inference - reduces then to 

The representation of a fuzzy system is used as an algorithm 

for a fuzzy controller: a decision has to be made as to 

which particular action- should be taken and fed into the 

process. The decision procedure applied here is to take that 

value yO at which the final membership function is a maxim~~, 

that is _ yO at which 

llB' (yo) = max llB' (Y) = max max min [llA' (x); llS{Y'X)] (4) 
y y x 
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THE APPLICATION OF FUZZY CONTROL SYSTEMS TO INDUSTRIAL PROCESSES 

P.J. King and E.H. Mamdani 

INTRODUCTION 

Complex industrial processes such as batch chemical reactors, blast furnaces, cement kilns 

and basic oxygen steelmaking are difficult to control automaticallY. This difficulty is due 

to their non-linear, time varying behaviour and the poor quality of available measurements. 

In such cases automatic control is applied to those subsidiary variables which can be 

measured and controlled, for example temperatures, pressures and flows. The overall process 

control objectives, such as the quality and quantity of product produced, has in the past 

been left in the hands of the human operator. 

In some modern plants with process control computers, plant models have been used to 

calculate the required controller settin'~ automating the higher level control functions. 

The plant models whether they are based on physical and chemical relationships or parameter. 

estimation methods are approximations to the real process and may require a large amount of 

computer time. Some successful applications have been reported, but difficulties have been 

experienced where processes operate over a wide range of conditions and suffer from 

stochastic disturbances. 

An alternative approach to the control of complex processes is to investigate the control 

strategies employed by the human operator. In many cases the process operator can control a 

complex process more effectively than an automatic system; when he experiences difficulty 

this can often be attributed to the rate or manner of information display or the depth to 

vhich he maY evaluate decisions. 
\ 

·.The operator usually expresses his control strategy linguistically as a. set of· heuristic 

decision rules. It is difficult to convert this qualitative control strategy into a 

quantitative controller design due to the imprecise nature of the rules. Therefore means of 

implementing the human operators control rules directly as an automatic control system is of 

,I , 



interest. , ·2· Zadeh's development of fuzzy sets and fuzzy algorithms provides a means of 

expressing linguistic rules in a form suitable for processing using a computer. In this 

paper are reported some case. studies on pilot-scale processes in which heuristic strategies 

using fuzzy statements are applied to the control of dynamic processes. 

THE CONTROL SYSTEM 

The structure of the control system is shown in Fig. 1; the heuristic decision rules replace 

a conventional feedback controller in the error channel. The calculation of the control 

action is composed of the following four stages: 

1) Calculate the present error. 

2) Assign the error value to a fuzzy variable such as positive Big. 

3) Evaluate the decision rules using the compositional rule of inference. 

4) Calculate the determimstic input required to regulate the process. 

The.exact form of the decision rules and the variables used in them will depend on th~ 

process under control and the heuristics employed. In general the process operator uses 

error (E) ani rate of change of error (CE) to calculate a change in the value of the 

process input (CO) and the decision rules are designed to have the same effect. This 

hpproach also corresponds to the versatile proportional + integral controller used frequently 

in the process industry. 

The error value and the change of error values calculated are quantised into a number of 

points corresponding to the elements of a universe of discourse. and the values are then 

assigned as grades of membership in seven fuzzy subsets as follows: 1) PB = positive big, 

2) PM = positive medium. 3) PS = positive small. 4) PO = positive nil, 5) NO = negative nil. 

6) NS = negative small. 7) NM = negative medium and 8) NB = negative big. The relationship 

between measured error or change in error value and grade of membership are defined by 

look-up tables of the form given in Table 1. These basic subsets may then be used with the 

three basic operators of union, intersection and complement to compute such values as "Not 

positive big or mediumtl
• Hedges m~ also be used but to avoid complications these were not 

implemented in this study. 

The decision rules are implemented as a set of fuzzy conditional statements of the form, 

"If E is NB ~ CO is PE". 

2 



This' expression is evaluated using the compositional rule of inference for a.particular 
. 3 

value of error E as described by Zadeh. The result is a value for change of input CU for 

any given value of error E. In most cases the rules are more complex than the example above 

and for the system using change of error (CE) and error (E) will be of the form. 

Itll E is PB ..2.!:. PM then if CE is NS then CU is NM" 

but the same methods of evaluation still apply. 

\ 

Several rules are required to completely define a control system; the results of evaluating 

each rule are combined using the union operator (max) to give an overall fuzzy value. for the 

control action. For example, 

etc. 

till A, then (if B, ~ C,) 

II A2 ~ (if B2 then C2 )" 

So given values .of measurements A;, A~, B;, B2 etc the individual rules results will be C;. 
C2 etc and these are combined to give the overall resulting control action. 

Cl = max (C;, C2 etc) 

Hence more than one rule may contribute to the computation of a control action. ~ 

• The result of evaluating the fuzzy rules for El. particular set of input values is a fuzzy set 
.'). , J; 

of grades of membership for all possible control actions. In order to take a deterwinistic 

action one of these values must be chosen, the choice procedure depending on the grades of 

membership and the particular application. In this work the control value with thelarg~st 

grade- of membership was selected, except in the cases where several control actions had the 

same (largest) grade of membership. In these cases where more than one peak or a flat peak 

is obtained the value midway between the two peaks or in the centre of the plateau was 

selected. Typical results are shown in Fig. 2 as curves of grade of membership versus control 

action. The shape of these curves can be used to assess the quality of the control rules 

used; Fig. 2' (a) shows a single strong peak indicating one dominant control rule in this 

region. Fig. 2 Cc} shows a fuzzY result which.indicates an absence of a good set of rules, 

while Fig. 2 (b) with two peaks shows that at least two strong and contradictory, rules are 

present. In both these latter eases some modification of the control rules may be 

necessary to obtain good control. 

The rules are evaluated at regular intervals in the same way as a conventional digital 

c6ntrol system. The choice of sampling interval depends on the process being controlled and 

should be selected $0 that at least fiVe significant control actions are made during the 

process settling time. 
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Control of a Boiler and Steam Engine 

Mamdani and Assilian4,5 conducted an application study on a small boiler steam engine 

combination. The heat input to the boiler was used to control the boiler pressure and the 

steam engine speed was controlled by adjusting the throttle opening at the input of the engine 

cylinder. 

The process dynamics could be approximated by two first order lags in series. with time 

constants and' gains varying depending on the operating conditions. The rules were 

evaluated with a 10 second sampling interval. 

Operating experience and technical knowledge of the process was used to specify two sets of 

heuristic fuzzy control rules for the two feedback loops. The look up tables used to specify 

the fuzzy subsets for values are all similar in form to Table 1; the number.of quantisation 

,levels used was 14 ' fbr error. 13 for change of error, 15 for heat input change and 5 for 

throttle input change. D~tails of the rules used are given in the Appendix. 

The ,fuzzY control rules were implemented on a PDP-8 computer and used to control the plant and 

a conventional digital controller was also used to control the two loops. The control 

,results obtained for the pressure loop are shown in Fig. 3; the digital controllers were 

difficult to adjust as the process is highly non-linear and good control could not be 

achiev~d at different operating conditions with the same controller settings. The fuzzy 

control system was much less sensi ti ve to process parameter changes and gave good contro;J. at 

all operating points, in many cases better than the conventional control system results. 

This can largely be attributed to the non-linear nature of the heuristic rules, which could 

be used to give a rapid response and a small amount of overshoot. 

,Temperature Control of a Stirred Tank 

.Jhe results obtained using fuzzy control of the steam engine were.much better than expected, 

so a second application study on the temperature control of a stirred vessel, part of a 

batch reactor process/is currently being conducted. ,The process consists of an Ba-gallon 

stirred tank which can be heated by a steam heating coil and is cooled by recirculating 

tank fluid through an external heat exchanger. The vessel temperature is controlled by 

changing the steam or recirculating flows. 

The dynamics of the stirred tank can be approximated for small changes in temperature by an 

integrator with' different gains for heating and cooling and a pure time delS¥ of 1 minute for 

4 
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heating'and 0.6 minutes for cooling. Initial control'experiments were conducted using the 

pressure control rules developed on the steam engine. while the process dynami'cs differ 

considerably it was thought that similar heuristic rules would be effective, if the values 

used to define the fuzzy subsets of magnitude were suitably adjusted. 

The results obtained by simulating these control rules in the simple process model are shown 

in Fig. 4 for set point changes. Two different sampling intervals were used to ,evaluate the 

rules~30 seconds and 1 minute; in both cases when del~s were included the temperature 

oscillated about the desired value. If the del~ was removed from the process model, however, 

good control responses were obtained. In the case with a one minute sampling interval the 

process finally settled to a steady value; this result was confirmed in practice as the 

results in Fig. 5 show the response of the prooess with a 1-minute sampling time 

interval to set point changes, 

The input quantisation levels for the fuzzy subsets of value can be adjusted to ~mprove 

the system response. However,more detailed simulations over a wide range o~'quantUtation 

values show that the del~ is the cause of the instability. The steam engine had 
negligible pure time del~s ~d the rules formulated using error and change of error values 

were adequate. Howeve~when del~s are present the rules must also account for the control 

inputs applied to the process which have not yet been observed as a change in the process 

output. For systems with pure time del~s the control rules will have to include a fuzzy 

model of the system to 'predict the future output of the system, or in other words previous 

value~ of control input will have to be included in the rules. New rules to control the 

whole ~f the reactor process are being formulated along these lines, but no results are 

available yet. 

CONCLUSIONS 

The results obtained so far show that processes can be controlled effectively using heuristic 

rules based on fuzzy statements. To obtain good control the fuzzy rules must be correctly 

formulated to take account of time del~s when they occur; this conclusion is similar to 

that arrived at for conventional controllers when del~s are present. 

The designer requires some knowledge of the process in formulating the rules. for instance 

knowledge of process del~s and speed and magnitude of respo~se,but only approximate values 

are required and can usually be obtained by operating the process. The fuzzy control system 
described is inberentl.y non-linear and phase plene plots showins the system quentiZ:ation 
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levels" the rules used in, each area and the magnitude of control action have been used to . , " ~,' "" .. ' : '... , .' ..: ,"", 

advantage as a design aid. 

The approach described here is not proposed as an alternative to conventional control in 

situations where this is effective;: however,in complex systems, the llS~ of fuzzy algorithms 

for control may be a non-trivial alternative approach. ,The :t:uzzy ,measurements, required can 

be obt~ned from instruments, or directly from the human operator, and there is considerable 

scope for interaction between the man and machine due to the ,fuzzy nature, o~the algorith~. 

In the most complex situations, control is often based not on one variable but on a 

combination of variables or events which the human operator recognises as significant. 

'Before control rules can be formulated these patterns must be, identi.fied as significant 

measured variables. 'While the approach described does not resolve this problem the use 

fuzzy concepts will be of use in this situation. , ~:; " .. *'!~:, (I : U".::,:£ : ....... . ':-' 

-'. . 
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, :-. . TABLE , . - Look-u:2 Table Relating Fuzz;r Subsets to guantized Error Values 

. ,_ ... : '. '.~' .. ,- .t,·· ~. ~ , 

-6 -5 -4 -3 -2 .:., -0 +0 +1 '+2 +3 :'0.;4' . v 
+5 +6 

PB Q 0, 0 , - 0 0 .() , 0 ',I. , 0 0 ' , 0, O. 1 0.4 o.S 1.0 
',. " 

PM 0 0 0 0 0 ,,0 0 <> 
, 0 0.,2 0.7 1.0 0.7 0.2 

" " 

PS .0, 0 O. 0 0,. 0 0 0.3 0.8 1.0 o. ~; , O. 1 0 0 
,', 

PO 0 0 0 0 0 0 0 1.0 0.6 0.1 0 0 O. 0 
, " 

NO 0 0 0 0 0.1 0.6 1.0 0 0 0 0 0 0 0 

NS 0 0 0.1 0.5 1.0 0.8 0.3 0 0 0 0 0 0 0 

NM 0.2 0.7 1.0 0.7 0.2 0 , .. 0 0 0 0 0 0 0 0 

NB 1.0 0.8 0.4 0.1 0 0 0 0 0 0 0 0 0 0 

!: 
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APPENDr'X 

Steam Engine Control Rules 

Pressure Control Algorithm 

Pressure E~ror = PE~ Change in Pressure Error = ePE and heat input change = HC. 

If PE = NB then if ePE = ~ (NB .Q!. NB) ~ HC = PB 

Or 

1f. PE = (NB .Q!. NM) ~ it CPE = NS ~ HC = PM 

If PE = NS then if ePE = PS .Q!. NO then HC = PM 

Or 

If PE :::: NO ~ if CPE = (PB.Q!. PM) ~ HC = PM 

Or 

1f. PE = NO ~ if CPE = (NB .Q!. NM) then HC = NM 

Or 

If PE = PO or NO then it ePE = NO ~ HC = NO 

If PE = PO ~ it CPE = (NB.Q!. NM) then He = PM 

11' PE = PO then if CPE = (PB or PM) then HC = NM - ----, - --
Or 

If PE = PS ~ if CPE = (PS .Q!. NO) then HC = NM 

If PE :::: (PB or PM) ~ if CPE = NS then HC = NM 

If PE = PB then if ePE = not (NB.Q!. NM) then He = NB 

If PE = NO ~ if CPE:::: PS ~ He = PS 

Or 

If PE :::: NO then if ePE :::: NS ~ HC :::: NS 

1f. PE = PO then if ePE = NS ~ He = PS 

.!! PE :::: PO then if CPE :::: PS then He = NS' 
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Speed Control Algorithm 

Speed Error = SE, change in speed error = CSE and change in throttle'opening ~ TC. 

If SE = NB then if CSE = not (NB.2!: NM) then TC = PB 

If SE = NM ~ if CSE = (PB.2!: PM .2!: PS) then TC = PS 

If SE = NS ~ if' CSE = PB .2!: PM ~ TC = PS 

If SE = NO ~ i:f' CSE = PB then TC = PS 

If SE = PO .2!: NO then if CSE = (PS.2!: NS .2!: NO) ~ TC = NO 

.!! SE = PO then if CSE = PB ~ TC = NS 

.!! SE = PS then if' CSE = PB.2!: PM then TC = NS 

If SE = PM ~ if' CSE = PB.2!: PM.2!: PS ~ TC = NS 

If' SE = PB then if C$Z = !!2i (NB .2!: NM) !h!!!. TC = NB 
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Ladislav J. KOHOUT: TOPOLOGY AND AUTOMATA. 

1. Introduction 

Conventional topologies play an important role in the study of sta­

bility of continuous, dynamic and control, systems [1] ,[21. Recently 

some attempts were made to unify automata and control theories f3J, [4J • 

The topological methods have been usefully employed in these generalisa­

tions [sJ ,[ 6J . 

It has been shown that, in certain contexts, standard topologies 

are too special to be applied to general systems [7} ,[~], or to automata 

[ 9] and that sui table generalised topologies are required [' IJ • 

Our present study has been motivated by the attempt to apply topo­

logical methods to studies of adaptivity, in particular, to the problems 

formulated by Gaines [lOJ~ This note is an expanded and complete 

revised version of a previously unpUblished note [131 that had some limited 

circulation earlier. 

This note does not aim at the presentation of any non-trivial or new 

mathematical results. Its only aim is a rather elementary discussion of 

applications of topologies to automata theory and discussion of the seman­

tics of some topological constructs in this context. 

2. Intuitive Motivation 

Set theoretical topological methods employ subsets or families of sub­

sets of points and mappings or relations between them. We shall not work 
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individual states, inputs and outputs of an automaton but with sub-

set, of them instead. Hence we shall aim at methods for description and 

manipulation of hyperstates, hyper-inputs and hyper-outputs, 

In general, we are interested in reachability, controlability and 

stability of a state-detF-rmined system. For example, we want to deter-

min~ a hyperstate that can be reached from a given hyperstate by the appli-

cation of a particualr hyper-input etc. 

Systems can be classified according to their dynamical properties, 

this classification forming a hierarchy of families of equivalence classes 

~odvlo a subset of hyperstates satisfying the condition that the mappings 

between the corresponding hyperstates of distinct systems are homeo~rphic. 

This approach then naturally leads to use of continuous mappings, closures 

neighbourhoods, nets, etc. in generalised topologies. 

The topological approach based on generalized topologies is by no 

means confined to crisp systems, for topological structures can be fuzzi-

fied. This leads in a natural way to generalised topologies "without 

points" 
I' 

(Koutsky (1947, 1952), cf. Kohout (1975) p. 29 of 5.1). 

Connection between various modal logics and their topological semantic 

models in the form of a Boolean algebra with an additional operator is 

well known (McKinsey (1941) McKinsey & Tarski (1948), Lemmon (1966), 

Usefulness of modalities for description of dynamics of systems has been 

pointed at in Kohout 1975, Gaines & Kohout 1975, Kohout & Gaines 1976. 

If topologies without points are used instead, this leads to a certain 

type of 
------------------~--
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3. Definition of Basic Concepts 

A state-determined system is specified by the relation a: 

a: I x S + S 

where S = {si} is the set of states and I = {it, i 2 , 

set of inputs of the system. 

i , 
n 

} the 

The next state relation (NSR) a can be decomposed into a family of 

relQtions E with regard to individual inputs: 

r = 

The mapping y 

a. , •.• ~. i
1

, i 2 , •. i
n

, •• e:I 
ln 

will be called a generalized closure operator [ 9] . The tuple (A ,,!!,) 

wil~ denote a general topology generated by the closure operator ,!!, on the 

carrier set A. Special structural properties of each topological space 

wil:L be characterised by a set of axioms [9 J. In part icular, we shall 

be interested in axioms having a topological property [121. This notion 

is closely connected with the concepts of hormeomorphism and continuous 

map}>ing. 

Definition 1: (mapping continuous at a point ~21 p. 269-270). 

Let f be a mapping of a closure spaceJZ= (R, ~) into a closure space 

The mapping f is said to be continuous at a point x of (j?; if 

X c.R, x€~(X) implies f(X) e:V(f(X». 

The mapping is said to be continuous if it is continuous at each point x 

of R, or equivalently, 

XeA implies ff~(X»)cy[fOO] 
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Definition 2: A homeomorphism is a bijective mapping f for closure spaces 

-1 such that both f and f are continuous. 

Definition 3: A topological property is a property such that if a closure 

space,R = <R~~) posseses this property then all homeomorphs of P also 

have this property. 

In the sequal,'an automaton will be viewed either as 

a) a next state relation Cl, or 

b) a time system 

a) Next state relations Cl: IxS + S with inputs S and ~tates I. 

Each input i k €I induces an input restriction Cl. on ~ 
l.k 

Cl. : i ik1 x S + S 
1.)< • 

The projection n of i k x S into S is a family of subsets i n= {Sn(i
l

) 
Srr ' •• SIT ' • , • Sn •• } h h t -S e p( S) 

(2) (ik' (i
k

) , suc tan • 

The elements of per) will also be called the input-base (i-base) 

generators. We can also define W- projection such that rxsk is projected 

into I. 

b) time system 

P: T x S + S where T is the time order. 

This T will induce a quasi order p on the set of states B. Note that ,if 

Si precedes $k' This does not exclude the situation where ~k also 

precedes s. in another time interval. It is also possible that S never 
1. r 

precedes itself. Hence P is transitive but neither reflexive nor symetric. 

Obviously, p, IT, W will generate distinct generalised topologies with 

operators TOPT, TOP, TOPr respectively. 

TOP
T

: ,f-J(S) +P(s) 

TOP
IT

: ~(s) +#1(S) 

TOP
H

: j:'(I) +#(1) 
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Each relation will induce a corresponding generalized topology by 

means of the canonica' expansion. 

DefInition 4: [i2]p, 38 (Canonical expansion of relation to a class of 

sets A). 

4. Important closures 

Topological properties and some important .axioms for generalized 

topologies that appear in the literature were briefly reviewed in ["91 

All axioms used in the sequel can be found in the list given at pp. 2G- ~? 

4.1 The Trans it ion Closure !! r 

This closure represents the set of possible states that are attained 

after a one-step transition. 

E.o(X) = XUa(X), Xc::;S 

It is obvious that this closure will be an OIA-topology. An OIA 

topology taken as a Boolean algebra with the operator ~ is sometimes 

called an extension modal algebra. 

Lemmon established the connection between extension algebras and 

T-modal systems. Hence the modal logic for description of transition 

closures can be based on a T-modal system [9]. The modal operator 

in this system will determine the set of possible states after one 

step transition. 

4.2 Accessibility closure 

This closure is defined as the transitve closure of the next-state 

relation 0: 
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This will be at least a pre-ordered (REFL + TRANS) OIMU-topology. In 

the case that the corresponding next-state closure also defines an A*-

topology, the!. will be an OIAU-topology. 

It is apparent that the closures defined in this paragraph will be 

upper U-modifications (U: !.(X)=~(i(X» of the transition closures defined 

in 4.1. 

On the other hand, accessibility closures must have properties 

induced by the quasi-order p defined in the section above, (they have 

to have the properties of TOP). 

If we assume that an automaton can be at present in any single 

state s. the topological space on the state space defined by accessibi-
1. 

lity closure will be a pre-ordered AIOU-topology. Hence it can be repre-

sented as a special case of S~modal logic. It appears that time modal 

logics are relevant to description of segments of automata behaviour. 

Unfortunately, the state space itself is only a pre-ordered space hence 

even time modal logics of such generality as 84.2 are not sufficiently 

general to fully describe a geneaal automaton. Also, the answer to the 

question of a single pre-finite extension of S4 which would describe all 

and only fine state machines is rather negative. There exist 5 pre-

finite extensions of 84 each of which can describe some automata of a 

special type. 

4.3 Generalised Measures 

In some practical applications it may be more convenient to define 

generalised metrics first and then to find corresponding generalized 

topologies induced by the metric. For example, in the case discussed in 
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the paragraph 4.2 we can define a pseudo-quasi-metric satisfying the 

following inequalities 

(1) d (x,n) ~ a 

(2) d (x,x) ~ a 

(4) d (x,z) ~ d (x,n) + d(n,z) 

where distance d is defined as inf. {d{x,n)- XEX, YEY} 

We can see that this cannot be quasi-metric, for we can leave simul­

taneously X$n and X~n with x_y 

The first two conditions (1) (2) induce an aIM topology. 

4.4. Iterations in generalized topologies 

l. 

2. 

3. 

For investigation of limit cycles, it is useful to look at iteration. 

We take g(X) = a(X) and investigate iterations in1his topology. 

gO(X) = X 

gl;+l(X) = g(g~(X» for every ordinal. 

g~(X) = y exist. g~(X) IO'y<~ I for every limit ordinal 

We are interested for example in the smallest ordinal for which 

gF;+l = g ~. 

5. Control-theoretical interpretation of some topological concepts. 

Reachability and accessibility play an important role in the control 

theory and have importance in applied automata theory such as the theory 

of adaptive behaviour (Gaines
j 

1972)fIO]. 

5.1 Accessibility 

Apart from potential accessibility which can be interpreted in modal 
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terms as possibility as discussed above in 4.2.J ,ome other forms of acces­

sibility can be introduced. For example, the next-state accessibility is 

defined by the transition closure Po' N-th step accessibility also has 

some practical importance. This can be defined by n-th iteration of 

the transition closure • 

. ' Attractors can be defined as the smallest family 

of accessibility closures of the set of all singletons of the state-space 

or equivalently as a U-modification of the next-state closure on the 

same set of singletons (J!..E;(K) =l!1litl). 

5.7 Reachability 

This can be defined as a binary predicate ••• is reachable from ••• 

Separability of two points or sets plays an important role here. 
= 

The usual H-separability axiom and its special instances (*~ J H-) H·· 

separibility) are not general enough for this application. Being used 

for standard topological spaces they are symmetrical, whereas the transition 

function in automata theory is not. 

We propose that the following non-symetrical axioms should be 

studied: 

Go: Vt (M)1N=O ( half of H-axiom) 

G1 : ~ of H 
= 

(Vi is a neighbourhood of M - cf. 5.4 below) In the case that Go holds, 

N js not accessible from M. 
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5.3 Interior 

For a given topological space~= (s~~) and a subset ~ interior 

is defined: 

intu (X) = s -~(S-X) when S-X is the complement of X. 

Control-theoretical interpretation for the accessibility closure 

as defined in 5.2, then Fr (X) contains only the states accessible from 
u 

both X and its complement. 
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6.1: Some i~nortant set operations. (30rtrvka, 11?76. ~ (l<It,.tJJ.ud~ t.o ik ~ , 

6.1.1 •.. e shall Generalise some concepts of Jort!vka. 
of ~"()UI'"'tJ g ~"t:.><Af' ~) : 

2-" 4 ~ 8: .. "lt~"UVjI4J~cqi) -Let S is a set, a AcS and P.Cexp 5; P is Cl: collection of P .• 
, 1 

N 

Operation ACE: 

6.1.2. ',le shall the follol-ring notation: 
. ~ ,., 

( the ~ has the meaning !.is 

incident with •• ' ). 

Let S be a set and write pes; P designates e collection of 

subsets of fhe set S (i.e. n::exp S). P \·rill designate 'a 

rartition in S. 

Examrle: 'S1:(1 ,2,3,4,5) t S2=(1,2,3,4,5,C) 

P =«1,2,3),(2,4),(5» Q=«1,2,3),(2tl~)t(5,6»; 

/pfs, t /ofS2 ' t#S1 ; 
A:« 1 ,2,3) ; ( (4,5) , (5 t 6» ; ( (2) , (3,4) ) ) =([;1 ;,a2 ;a3

) 

,.., ~ .... 
IP is the union of all subsets contained in Pi e.g. for Q , -civen above ~:~=S2. 

• , 
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. 

In this part we introduce some operations on adaption sets 

of GainesEoJ. For the purpose of our discussio.n .1e have to 

introduce some new sets concerning non-adaptivity. 
,., 

6.2.1. :h8 system of closures F(T1). 

Let us define an input-restriction nf the autrrul ton.:A: (1.4.1). 

The system of transitive closures (1.3.2) for~s e~ OIMU-topol-

ogy on the ..k1 Clf). 

Take all singletons from S and form a collection of closures 

accordinc to 4.2.2. ,., .... .... nJ.s 
<I'J . 

partially ordered collection iE F(T1 ). 

6.2.2. Hote that for an infinite state-space S we have to use (instead 

of sinsleton~ all H-connected components of the state-space S. 

The problem becomes more complicated. The theory of eech ['I2J 

(pp.362-3G4,845-846) has to be applied. Also the question, 

if the next state closure is an A·-topolo3~has to be decided 

first. 

6.2.3. ~he most important adaption sets. 
e • ... 

pet) a system of closures of an input restriction by t; .. 
~'i ( t) the set of satisfactory interaction. 

X(t) the set of unsatisfactory interaction; 

The end-sets: 

the set of the smallest closures (atractors) 

excluding ~; 

E+(t),E+(t) 

3' (t) ,:.'t (t) 
the set of positive attractors (satisf. int~ract.) 

the net of neGative att~nctors 

.. 

'r 

, 



6.2.4. 

. t~, :. 

,.; 
O(t).c(t) 

,., 
r:;.(t) ,Q{t) 

pet) ,pet) 

R(t),~{t) 

J..(t);A(t) 

B(t),B(t) 

c( t) ,e(t) 

D(t),D(t} 
,., . 

J(t),J(t} 

K(t),K(t} 

':2he calculus 

- ('2-

the set of possible adc;~;tivity (it is 

impossib~e .t6 access the positive attractors 

from the set of states "'lhich do not belonG to this 

set). 

the set of possible non-ad2ltivity 

~otentialY RQ8ptive 

~otentiolly. non-adaptive 

adapted (unsatisfactory interacti~n im:ossible); 

non-adaptive (satisfactory interraction 

,impossible;can not adapt) 

com~atibly non-ada~tive 

jointly adaptive 

jointly non-adaptive. 

of e.d:::tption sets. 

t. • •• single task 
~ 

T. .;. a set of tasks 
~ 

f),U ... set operations on a set of states .. 
V ... ah operation on inputs. 

For any U-(F ,o7~,P','2~'A,BtC,DtJ ,~)'fi"" 

,. . 
• 

.. 

• , 
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Examples of annlicationo; of the calculus. 

, '£1-
---~~ 

/ 

tf"' 
. f 

t'" 
I 

E {h):: ~ ( G J (7) ('5)"7 

'E+(~l)" wC t,) C £[i;d =-(r,6 nr: f((,,)(1J{'i)}--!l(&J} 

?-(b l )" i (~U 7 

A(f.) ~ ((',7) 

• , 



s.~ (101 
- tlt-

~(h)" i (1){~)l\rJ (s)}. 

El-(h)-;:: { (~) (~) (.,) 1 
r-Ul.) "= i (~H 

q{t~) ~ {(1J} -
E • (fd , I~(i.) .. (Ci..1) (1) ~ • 

C (1, \ (cJ. P (f,) h 1?{h)7(f '(f,) c rl h») v~ 'Ch) d'Ud) ~ G (P' r. H' ) 

t 
(4 i -(;J( '"') (' J } 

F{i, vLJ -=. (In~n;tP')(2"3.,r'·z,f<))(1t,i't71') (7R) 
(;'5] ro:;) . 

t 

'J
A 

(I, ~ t,) ~ C(i,'!') -{"-r l ( AU,)i\4(h») c er f,' '~)J 
t~,~tR A -= ('. A .'. ('. k-r rc ··-.<-; f. 

Of' 

"'. , 



p O:i ) =F< T. ) - (R (':;; . )1: r ( T . ) ) 
3. J. 3. 

N.,., ~ , 
A(T. )=1· (T. )-X(T. )C.P(T.) 

J. 3. J. 3. 

~.... ...... 
B ( T . ) =R (T . ) - '.f (T • )e R (T • ) 

3. 3. 3. 3. 

;.;J ( t ) =P ( t ) for t a sincle task. 

0.2.5. Generalization er t1'e calculus. 

In~tead of taking an adapt ion automaton with a two-element 

output P:(p+,p') vIe can take an ordinary automaton vlith 

the set of outputs P:(P1,P2, ••• ,Pk' •• ). 

In this case each adaption set will be dependent on the output 

B.nd the duality betvleen U and dU dissapear. ','s have to modify 

the notation accordinGly. Ue shall v/rite e<. J(TiIPk) inst.ead 

of J(T.). For our special cass of adaption automata we 
3. 

shall obtain J(T)~J(Tlp+) and K(T)=J(Tlpt) etc. 

The generalised calculus cc-m be used f.or investiCi.::tion of 

reachibility and control ability in general (non-linear) 

aubomata as well as for investigation.of some stability 

rrc?{,y'He.s .' .. 
. (: 

• , 



- 16 -

6.3 stability 

Investigation of relationship between sets describing the 

state of an adaption automaton and corresponding topologies can 

be regarded as a special case of investigations of stability. The 

closures induced by a next-state relation can be compared with the 

closures induced by the tolerance relation thatdetermins the topol-

ogy with resp~ct to which the. stability of a dynamic trajectory of 
ig 

the automaton evaluated. 

In some instances in may be advantageous to work with the 

generalised metrics that correspond to the closures in question 

than with the closures directly. 

The tolerance relation that determins the regions of stability 

can be expressed by a semi-pseudo-metric given by the following 

expressions: 

(1) d(x,x)=O 

(21;t) d(x,y)~O 

(2b) d(x,y) = d(y,x) 

The topology induced by an input or a set of inputs defines 

a preordered standard topological space that can be defined by also 

by the following generalised measure: 

(1) d(x,x)= 0 

(2a) d(xtY)~O 

(3) d(x,y)~d(XtzJtd(z,y) pre-ordering 

stability of a set of inputs with respect to to a tolorance 

topology than can be define4. An automaton is globaly stable 

with respect to a tttolorance" toplogy if the inpu:t""i;nduced preordered 

topology of this automata is a refinment of the tltolerance lt topology. 

In other words, the automaton is globaly stable if the U-modification 

of the tolerance topology is finer than the topology induced by inputs. 
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In the terms of measures, the necessary condition for the 

global stability is that the "tolorance" semi-pseudo-metric is 

also a pseudometric. 
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ABSTRACT 

The paper gives an algebraic formulation of constructive rules for 

generating the functionally complete sets of functors in many-valued 

logics. The sets of functors which can be generated by the rules comprise 

the majority of currently used systems as well as some new systems [5J. 

The algebraic formulation of the rules, which generalises previous works 

on Pi-algebras [9],[10J, [5J, is suitable for treatment of isomorphisms 

and transformations in many-valued logics. 

The paper also examines the role of functional completeness in appli-

cations. Particular attention is paid to multi-valued models in biology 

psychology and medicine as well as to questions of simulation in technology. 
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1. INTRODUCTION 

Some logicians consider the functional completeness of many-valued 

logics to be "an interesting feature from the purely formal, algebraic 

point of view ••• in some ways desirable, but certainly not essential" [~ •. 

Ineeed, for a logician there exist some other perhaps more important kinds 

of completeness (e.g. deductive completeness, etc.). It is also true that 

some important many-valued iogics are functionally incomplete. 

However, the situation considerably changes if we are interested in 

applications outside logic. Functional completeness is important in 

such applications where it is necessary to be able to senerate all possible 

many-valued functions by means of basic connectives. It is obviously 

desirable to have a set of gates which can generate any combinatory switch­

ing circuit [2J~[3rr, but there may exist some other more recent applications 

of many-valued algebras, where functional completeness is equally if not 

more important. This question will be briefly dealt with in the next 

section. 

In applications we need to design a complete system of certain proper­

ties. This may be difficult if we use the general criteria for complete­

ness of Rosenburg [4]. Some difficulties involved were discu.ssed in [5J 

together with suggestions as to the use of certain less general rules of 

a constructive character. These rules, which determine a wide class of 

compleee partially-defined many-valued algebras, were discovered by 

Pinkava in 1971. These many-valued systems, which are called Pi-algebras 

in this paper, include most of the currently used many-valued systems, 

(the Post and lattice systems, ring and semiring systems, the Aizenberg­

Rabinovich systems, etc.) as is shown in the table of their partial 

classification ~1 ,Fig. 1 The rules have already been used for 



generating new sets of gates for many-.alued switching networks 5. More 

recent applications include the d~sign of a new many':'valued functionally 

complete calculus which is used for analysis of protection structures in 

multi-user computing systems [6). 

The aim of this paper is to give a more general formulation of the 

rules which because of their algebraic character make it possible to 

deal with questions of isomorphisms and transformations[7] in a manner 

similar to that of [a] bukfor a much wider class of systems. 

The results given in this p,per generalize the previous results of 

Pinkava [9]. [Iq] as well as Theorem 10 of Kohout [5J . 
2. IMPORTANCE OF FUNCTIONAL COMPLETENESS IN SOME APPLICATIONS 

Although there exist many types of completeness in logic which may 

be more important for a logician then functional completeness of logical 

calculi, functional completeness will often be the primary interest of 

a scientist or an engineer engaged in practical applications of logic. 

The role of functional completeness of logic systems in the desigh 

of switching circuits is similar to that of complete spaces in state-space 

theories of control [11). A control engineer may wish to use algorithms 

with guaranteed convergence, and analogically a logic designer would pre­

fer minimalization algorithms converging for any switching function. 

The latter is impossible if the set of elements into which the switching 

circuit is decomposed is functionally incomplete. 

In pattern recognition using adaptive many-valued logic nets, the set 

of basic 'cognitive' elements of the net has to be complete, otherwise 

some possibly important patterns will be misclassified. This is particu­

larly important, if we apply pattern recognition methods based on many-
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valued logics to a set of medical data 13 for the purpose of medical 

diagnosis. Similarly, in biological [14Jor psychological and medical 

[IS] ,[16J , [17] , models based on abstract pattern classification by logics, 

the choice of an incomplete set of functors as the base of the model 

would represent a bias towards assumptions which might not be contained 

in the experimental data. For example, in models of instincts [14J , (18) , 

this would represent the a priori assumption that certain forms of 

instincts do not exist which are already described by the experimental 

data. In models of psychiatric disturbances[19], [20], this would represent 

a priori exclusion of some impairments of the structure, diminishing the 

principal usefulness of the model in the search for new symptoms. 

If incomplete systems of logical calculi are used for examining 

hazards in switching circuits or for modelling fault occurrences in digi­

tal circuits, this again leads to the elimination of certain possibly 

vital hazards and faults fDom the model, rendering the model unreliable. 

In general systems theory approaches to modelling, which use essen­

tially many-valued algebras[3](an extension of Svoboda's Boolean logic 

approach [nJ ' [22J ), the consideration of functional completeness may 

influence the choice ef sampling mask, which represents a heuristic selec­

tion of certain hypotheses. 

The common features of all examples hitherto in which functional 

completeness is important can be summarized in the form of the following 

principle: 

Functional completeness is important in all cases where we are not 

concerned with deductive systems but with systems which extract some 

structure from experimental data or where we are concerned with con-



vergence of minimalisation methods applied to many-valued algebraic 

models. 



3. FUNCTIONAL COMPLETENESS IN PI-ALGEBRAS 

Definition ~ and Theorems 1,2 represent the main result of the paper. 

Some auxilliary definitions which are necessary for the proofs and not 

easily available are given in the Appendix (aumbered Al-A7) together with 

relevant references to the literature. 

Definition 1. 

Let P be a cyclically ordered set and aeP, beP. 

Let a precede b. 

1) (a,b,c)€ re 
We say that b is the direct successor of a iff: 

(for the definition of and other symbols see the 

appendix). 

2) in the set P\(a), b is the first element in U~(a) 

3) in the set p\ (b), a is the last element of 1,( ~ (b) 

Then we write a;:5 b. By analogy, we define b~ a (b is the direct predecessor 

of a). 

The familiar cyclic negation (~=v+l mod k) which was used in previous 

work can be substantially generalised. 

Definition 2. (a cyclic shift function) 

Let P be an arbitrary set. If there exists a cyclical order of the 

set P such that every pEp has a direct successor q, and q is the direct 

predecessor of~ then we define the cyclic shift function corresponding 

to that cyclical ordering as a mapping such that; 

1) f: p .... p 

2) for every PEP it holds that p .,:S ~ (p). 

The composition of mappings is defined in the usual way as 

k = f{ ~ (p» , peP 



Definition 3. (Distance) 

Let PI' PtP and .p be a cyclic shift function, Then the distance ! of 

the elements PI' P2 with respect to + is the least ordinal such that 

~?PI) = P2' We write ~~ (PI' P2 )· 

Lemma 1: 

Let ~be a cyclical ordering and ~ its inverse. If P2 is the direct 

. '" successor of PI in tt* (Le. PI -::6 P2), then P2*PI , Cl 

Proof: J"'(PI ,P2 ) = J(P2' PI) = 0 from Def.l and Lemma A.7 • 

Lemma 2: 

is an automorphism. IJ 

Proof: If is not a monomorphism, then for some PI ~ Pl<: .p (PI) = Pj and 

4(Pk) = p., i.e. p,~ p., Pk:~ p.. Therefore J(p., p.) = J(Pk' p.) = 0 
J ]. ] J ]. ] ] 

which is possible only if Pi = Pl<:' 

If. is not an epimorphism, then .p (x) ~ p. is true for every xcP. Let 
J 

us take (p , P., P )e: 'l 
1" J S 

From Lemmal p -< p. , 
1" J • 

Definition 4, (Definition of Pi-algebra) 

Let Pi be an algebra luch that 

Pi =<P, • ,0,EB, > where 

a) P is its ca1"1"ier 

b) cfl is a cyclic shift function 

c) (G .. ~) is an arbit1"ary gI"oupoid with zero ;.+) , without divisors of 

the zero, and with the absorbing element 't) such that 

7.,. p=p ~ 1+> = ar.) fo1" every PEP, p "# r.) 
d) <G,0) is an arbitrary gI"oupoid with the unit ee 

e) <G)Jl:I) is an arbitrary gI"oupoid with a right zero zrm and a right 



unit 7riBJ 

In order to have a more succinct way of writing let us further intro-

duce the following symbols: 

, n finite 

n n 
Analogically we introduce the symbols 0, EEl for repeated operations 

1.:;1 i=l 
<::> ,EEl respectively. 

More generally, we shall write e.g. ~x for repeated operations 
xe:S 

of taking all elements from an arbitrary set S. 

Let further t { 4»"< v)} = v .. ' (v). $ ~ (v) ~ ........ .f $( v) 

where t; is the least ordinal such that q, t; (z(~) >=Z(.)' 

~[{$ "1 v)} ~ v( v>] is the abbreviation for 
v-I 110.. v+ 1 LII. 

v~(Hv >.f ...• cP (v)qr' (v)...,. 

Definition 5: 

iff v = /iIe. 

iff v ;'t;Jt 

Lemma 3: 

A constant function is given by 
(.ilIl.. ~ 

c'Jt, = .[f'{~(v)}] where (i(:; ~(z(.) ,cl3() , ct;;Jf£P' n 

Proof: From Lemma 2 it follows that there will be one and only 

one function q, (v) = z(~) for any value of v. Consequently, from the 

property of the zero, ~{;«(v)}= ~~J' However, $ ~z(t)= c t3L • 

Lemma 4: 

where q,* is an inverse cyclic shift function obtained by the substitution 



of re it (see Def. A6) for re in Def. 2. 0 

Proof: The expression ~[ {'</l~v»)3- <1>" (v)] will assume the value 

Z for all argument-values for which one of the functions v, <I>(v),<I> 1v), 
(~J 

v-I "+l( , •••• , <I> (v), </l v), ••• assumes z.a. 0 However, for that 
(~) ~" 

argument-value for which If>" (v)=~.) . the function ~ { <I> (vB - <I> (v)]=a(~) 
,because <l>v (v) has been removed and there is always exactly one 

of the remaining functions to assume the value (~) for that particular 
v *~ 

value, <I> (Pj~=f.) That <1>" (v) =<1> (v) follows from <I> (z(~) )=c~. 

Lemma 5: 

Any function f(vl , v
2

' •••• , vn ) of a many-valued logic system may be 

expressed by means of a formu~ of the following type: 

a 6* 6 
f(YI'v

2
, ••• ,vn ) = l:)<I> )2(<1> 2 (c )BB, I 

VCf(al,a2,..an )lf~e(0) 

r A;n 
t •• 
'.=1 

) 

'a . (v,) J 
I.' 

) 

.--.-----~--­-_._-------" .-. 
Remark: In the above formula ~ means the repeated operation 

\f{f .. ~) 
for such substitutions aI' a2 , ,." an' a j eP, of the variables VI' v 2 ' 

for which f ~ e 

", The distance 02 is the inverse of the distance O2, 

Proof: Any many-valued function depending at least formally on n 

variables may be viewed as a family of all (n+l)- tuples of the type 

(aI' a2 , ••• , an; a>" where beP. Here, <aI' a 2 , ••• , an)). are the indi­

vidual substitutions of the variables VI' v2 ' ••• , vn causing f(vl , v2 ' 

••• , vn ) = bA • For the substitution <aI' a2 , .0. an~A the respective 

set of characteristic functions (1/1 (vI)' 1/1 (v2 ), ... , JP (v» A 
a l a2 an n 

will assume the value aA, ,and z.&\ for other substitutions. Therefore 
(wJ (v) 

( 1/1 (vI)~ 1/1 (v2)~'" ~ 1/1 (v »A = a(A\ when substituted 
a l a 2 an n VI 
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and z(t) otherwise. 

lPa. (~II»]= e 
x. ~ crIB) 

for that substitution and 

otherwise. 

If then we form an expression of the type 
o 

c
y 

m , 1 [ ~ lP at (V(\ then owing to the existence of 

e , the expression will assume the value b for that substitution, and 
(rES) 

1fB) otherwise if we set \ = bA • If we add !~e transformation of the 

constant, we obtain instead of ~ the value • (b X )' This value will be 

transformed back to b
A 

after the application of the last transformation 
&2 

~ (1RJJ) = e(cW 

From the properties of c::> it follows, that the whole formula will assume 

the same values bA '# Z(ft) as the function f(vl , v2 ' ••• , vn ) for each 

respective substitution (al , a2 , ••• , an»), 

Theorem 1: 
• 

Any Pi-algebra is functionally complete if the following condition 

is satisfied: 

(Ze.> ,z(m) ) = {1-' where El = (a(t> ' e{m) ). 

Proof: It easily follows from Lemmata 3,4,5. 

Theorem 2: 

If the right zero z(rlB ) is also the zero and the right unit e(rm) 

is also the unit of the groupoid (Gj,EB), then the following holds: 



Proof: The functions'" (v) "a t 
~ 

can assume only values z{~)' a(t)' 

e 1 • 
Thus in this case fB will behave after the transformation </l l.n 

the same way as~ before the transformation. 

It is obvious that the majority of the theorems from 19) t [10], as 

well as the classification of the Pi-algebras given in [5] remain valid 

for the generalisations given in this paper. 

4, CONCLUSION 

The aim of this paper is to provide some sufficient conditions for 

cunctional completeness of a constructive character~ which can be used 

for the design of complete sets of functors to suit the requirements of 

various applications. 

It has been noted that the general conditions of Rosenberg are par­

ticularly useful in establishing negative results r2~but in order to 

obtain positive results in an easy way some more constructive methods have 

to be developed. 

IT should be noted that the conditions given in this paper can also 

be used for establishing positive results concerning functional com-

pleteness in algebraic systems. The groupoids of the complete Pi-algePra 

can be 'collapsed' in various ways into a single functor which makes it 

possible to obtain results similar to that of 1241 . 



APPENDIX 

We shall give here some definitions and theorems used in this paper. 

The proofs can be found in the literature quoted. 

Definition ,Al: (eech [25J p.3l4-) 

A cyclical ordering of a set P is a subset ~ of the set PxPxP sat-

isfying the following conditions: 

1) (a,b,c)€~ :;)(b,c,a)c=re? 

2) (a,b.c)e~ and (b,a,c)E~ never hold simultaneously 

3) if neither (a,b,c)e~ nor (b,a,c)c~ ,then two of the elements 

a,b,c are equal 

l4-) (a,b,c)e~ , (a,c,d)et' ~ (a,b,d)i!e' 

Lemma A2: 

Let P be a cyclically ordered set and let a P. If xcP\(a), 

Yf! p \(a), we say that x precedes V if and only if (a ,x ,y) E q: . Then we 

shall write x~y. This defines an ordering of the set P\(a), which will 

be denoted 

p.3l4-. 

Lemma A3: 

~(a). 
v 

For the proof that this is an ordering see eech [251 

Let a e P and let there be given an ordering of the set ~(a). Then 

there is exactly one cyclical ordering ~ of the set P such that the given 

ordering of the set f\ (a) coincides with 'Ulf(a). 

Proof: see eech [25], p.35 



Definition A4: 

Let P be a cyclically ordered set and let aeP, b.P, a~P. Denote by 

J f{ (a ,b) the set of all x such that (a ,x ,b) e tl . This set is called an 

interval of the set P, with beginning a and end b. 

Definition AS: -
Let G(*)=(p,*) be a groupoid with the domain P and the groupoid 

operation *. Then the left zero element zl(*) is defined by zl(*)*P=zl(*); 

a left unit element e1(*) is defined by e1 (*)*p:p; iff the equa1ities hold 

for every peP. A left absorbing element a1 (*} is defined by a1(*)*p=a1(*) 

if it holds for some pEP. By analogy, the right zero z (~) is defined by 
r " 

Zr(*)=P*Zr(*)' Similarly we can define a right unit or a right absorbing 

element. The zero zen) (or a unit, an absorbing element) is both, the 

left zero (left unit, a left absorbing element) and the right zero (a 

right unit, a right absorbing element). 

Definition A6: 

Let {f be a cyclical ordering of a set P. Define ~* C PxPxP as follows: 

(a,b,c)€ 'la <s> (c,b,a)E i' 
Thene* is the inverse cyclical ordering to~. 

Lemma A7: 

Let ~,~* be two mutually inverse cyclical orderings of P. Then 

J~*(a,b)=Je (b,a), where a,b&P, a~b. 

A more detailed exposition of cyclically ordered spaces (including 

infini te topological spaces) is given in [26], pp. 294- 312. 
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This paper describes an application of fuzzy logic in 

designing controllers for industrial plants. In such cases 

where a linguistic control protocol is easily derivable or 

exists in the mind of a skilled operator a Fuzzy Logic can be 

used to synthesize this protocol. Fuzzy logic transforms 

the imprecise linguistic statements into a precise numerical 

calculus which can be used by an on-line crnnputer. The method 

has been applied with success to pilot scale plants as well as 

in a practical industrial situation. The merits of this method 

in its usefulness to control engineering are discussed. 

Fuzzy logic is able to tackle sets of lingui.stic statements 

which describe the interreJ,ation between several variables. 



This ability could possibly be exploited in other fields 

apart from control engineering, which have not been 

investigated sufficiently because of their unsuitability to 

treatment by a precise branch of mathcrnat:ics. The vlork, 

therefore, illustrates the potential for using fuzzy logic 

in modelling and in usoft U applications like decision-making. 

The success of implementing a fuzzy controller depends, 

of course, on the availability and reliability of the 

linguistic protocol. This cannot alvlays be guaranteed 

except in simple cases because the protocol may be too 

complicated for the operator to reproduce in whole and 

accurately or it is too difficult to develop because of the 

complexity of th€ process. The objective or goal UlaL is 

to be achieved, however, is often much easier to verbalize 

and consequently the need to go beyond a purely descriptive 

approach and explore means by which a prescriptive system 

may be implemented presents itself. 

of such a method are described. 

Possible implementations 
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1. Introduction 

The fact that mathematics as a \'lihole is taken to be 

synonyn\ous vd th precision has caused many scientists and 

philosophers to show considerable concern about its lack of 

application to real world problems. This concern arises 

because in logic as vwll as in science there is constantly a 

gap between theory and the interpretation of results from the 

inexact real world. Many eminent thinkers have contributed 

to the discussion On vagueness, occasion3.1ly holding human 

subjectivity as the culprit. 

In an excellent analysis of the subject Black [1] says .•. 

"t.hat with the provision of an adequate symbolism the need is 

removed for regarding vagueness as a defect of language". 

In his paper he strongly argues that vagueness should not be 

equated It!! th ecti ~.Ti ty. 

summarised by noting that the colour 'Blue', say, is vague but 

not subjective since its sensation among all human beings is 

roughly similar. It is possible to deal with colour precisely 

by considering the e.m. radiation producing it but in doing so 

the important human sensation of colour, as it happens to be 

vague, has to be sacrificed. Furthermore, it may be argued 

that vagueness is not a defect of language but also inlportant 

source of creativity. Analogies are extremely important to 

creative thinking and vagueness plays a dominant role in such 

thought process. 

Black's motivation to symbolise vagueness appears to be at 

the back of all investigations of "Deviant Logics" [2]. An 

important contribution in the past 10 years has been that of 
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. Zadeh's fuzzy-set-theory and fuzzy-loqlC [3]. In his rC:C't.:mt 

writings Zadeh [4,5] states clearly his motivation which is to 

use fuzzy set.s to symbolise Approximat:e Reasoning (AR). 

Whereas there are many applications of fuz~y-set-theorYI this 

paper describes one of the first rosults in the application of 

AR and linguistic synthesis. 

1.1. An Outline of the Paperts Content: The intention in this 

paper is to review the whole program of investigation concerning 

the application of Fuzzy-logic to controller design and to 

analyse the findings in order to offer insightful comments and 

conclusions.. The original vJOrk in this program vlaS done in 

early 1974 [6] and first published later that year [7,8]. 'l'his 

was the control of a pilot scale steam-engine using fuzzy-logic 

to interpret linguj.stic rules which qualitatively express the 

cori tro 1 s tr a tegy . This \lark is briefly revieviec1 in lhC:! llE:xt 

section of this paper. 

Since the publication of the above work several researchers, 

elsewhere have also implemented the approach using different 

pilot scale plants. This together with the continuing work as 

part of this programme have produced results which throw more 

light on the usefulness of applying fuzzy-logic to linguistic 

synthesis. Section 3 below offers comments on some of the key 

findings of these studies. 

One of the conmlents that has been made about fuzzy-logic is 

that in its present form it is essentially descriptive and does 

not offer a prescriptive approach to reasoning. In the first 

place, it should be noted that fuzzy-logic, like any other form 

of logic, can only be a system for inferring consequences from· 

previously stated premises and only from these premises. A 

prescriptive system is possible, however, if a hiorarchical 
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deei on maki~g approach used so that the strategy at a 

lower level is d0rived as a consequence of a description at 

a higher level. Two early implementations of such a 

prescriptive method (some might term this a learning or an 

adaptive approach) are discussed in section 4 of this paper. 

To conclude this paper the last section examines the future 

trend in this fi01d in the light of experience being gained 

from current investigations described here. 

2. ~n Experiment ill Linguistic Synthes 

2.1. A Brief Revie~ of fuzzy-logio; The point of view adopted 

here is that the variables are equated to universes of discourse 

which are non-fuzzy sets. These variables take on specific 

linguistic values. These linguistic values are expressed as 

fuzzy subsets of the universes. 

GiVefl a subset A of X (ACX) A can be represented by a 

characteristic function: XA: X-)-{O,l}. If the above mapping is 

from X to a closed interval [0,1] then we have a fuzzy subset. 

Thus if A were a fuzzy subset of X it could be represented by 

a membership function: ~A: X+[O,lJ. 

Note that X is a non-fuzzy support set of a uni.verse of 

discourse, say, height of people. A can then be equated to a 

linguistic value such as tall people. Fig. 1 shoYls two 

linguistic values Al and A2 and their logical combinations 

Al i Al AA2 ; Al VA2 i 'V/here: 

A2 is formed by taking (l-~ ) as membership value at each 
A2 

element of support set, 

AlAA2 is formed by taki.ng min (~A I ~A ) at each element 
1 2 

of support set, and 

AI VA2 is formed by taking max (~A 'PA ) at each element. 
1 2 

",1- ~~""......T"'t"Y"'.f- co.-!-
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It is in the definition of implication that this logic may 

be found to differ from other logics. Give", A->B (If A then B) , 

then it can h~ppen that A and Bare lin?uistic values of t~o 

disparate universes of support say X and Y. Note that here the 

implication is between individual values and not the umlerly:i.ng 

variables. 'rhus the rela Lion R between A and B is· a fuz zy 

subset of the universe of support X x Y, the cross-product of 

X and Y. ~R(X x y) is related to ~A(x) and 

~B(Y) (in the present application) by the following: 

If the relation R represents a "nested" implication (i.e. 

If A then (If B then C) or A+B+C), then R v/ill have a correspond in 

higher order cross-product support set. 

Now if some relation R between A and B is known and so is 

SOfie value Al then the idea i5 to inf8:C Bl f:C0111 R BllQ h'; 

B I ' = Al oR, where Ai is composed with R. This has the effect of 

reducing the dimensionality of the support set of R to that of Bl, 

In this work, the compositional rule of inference used to relate 

~Bl (y) = max min (~Al (x), ~R(x x y». 
x 

These definitions are themselves a matter of much discussion 

but that concern is outside the scope of. this paper. The settins; 

up of relations R from stated implications between fuzzy values 

and the subsequent use of the rule of inference are the chief 

mechanism used in decision making in the application described 

below. 

2.2 Applioation to fuzzy-oontpolZeps: As stated earlier the 

linguistic synthesis approach vIas initially applied to controj 
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a pilot scale steam-engine, a more detailed description of 

which is given elsewhere [6,7,8]. A concise su~nary of th 

work is presented here. The overall control system is shown 

in figure 2. One aspect of control in this system is the 

regulation of pressure in the boiler around a prescribed 

set-point. The control is achieved by mensuring the pressure 

at regular intervals and inferring from thi3 the heat setting 

to be used during that interval. The essence of this work is 

simply that if an experienced operator can provide the protocol 

for achieving such a control in qualitative linguistic terms, 

then fuzzy-logic as described above can be used to implement 

successfully this strategy. 

The protocol obtained from the operator in this case 

considers pressure error (PE) and change in the pressure error 

(CPE) to infer the amount of change in the heat (HC). The 

protocol consists of a set of rules in terms of specific 

linguistic values of these variables and is shown in figure 3*. 

Now it can be seen that these rules are in the form of 

If ••• Then statements (implications) and thus, from above, ench 

rule i will translate into a relation Ri' The overall protocol 

is then a relation R formed by 'oring' together the R. IS: 
~ 

Let us say now that each rule Ri represents an implication 

, A.+B.+C .. 
~ ~ ~ 

The decision making algorithm that is implemented 

*The abbreviations used for these linguistic values here are: 

ZE-zero; PZ-positive zero; PS-positive small, PM-positive medium; 

PB-positive big and the same for negative values NZ,NS,NM and NB. 

Change in Error negative is taken as movement towards set-point 

and positive as away from set-poin~. 
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contains two phases: 

a. The initial setting up phase when the protocol R is 

formed from two sets of data: 

(i) The individual linguistic values Ai' Bit Ci given 

as fuzzy subsets. 

(ii) The rules as in fig. 3 which specify the actual 

combination of these values to form each Ri' 

b. The decision making phase is invoked at each sampling 

instant during run-time with the exact measured values 

Al and Bl supplied to it. '1'his phase then is not.hing 

but the use of compositional rule of inference to dc~ive 

Cl as follows: 

Note that Al, Bl can be non-fuzzy, whereas since Cl is 

a fuzzy subset of the set of all possible actions, a procedure 

is required to determine the actual action to be taken from 

the knovlledge of Cl. Also there is a certain advantage in 

deferring the computation of R until the second phase. Because 

then this provides a means of altering the control strategy 

on-line by altering the data structures containing the rules 

during run-time. However, what need concern us at present 

is the results obtained from the application of this method to 

the pilot scale plan. In repeated trials it was found that 

the results compared favourably with those from applying 

classical methods from control engineering practice (i.e. 2 

or 3 term controllers). 

3. Comments on Pu?zy-logic Controller Studies 

'1'\'10 main conclusions helve been drawn from this work. 
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First, that the results vindicate the approach advocated by 

Zadeh and demonstrat.e its potential. Second, it can be 

asserted that the method can easily bE:: applied to many 

practical situations. This assertion i~ supported by 

considering a practical instance, that of cement kiln operation, 

in which a similar control protocol obtains. In a book cn 

cement kilns, Peray and Waddel1 [9] list a ccllection of rules 

for controlling "kiln. Examples of these rules are shown in 

·figure 4. From this it is immediately apparent that the method 

as described, can be used for translating these rules. 

Furthermore, this method has also been tested on plants such as 

batch chemical reactors, heat-exchangers and so on. Some key 

feature emerging from these studies are mentioned here for the 

sake of interest. 

In many of the studies, rules exactly as those given in 

fig. 3 are used with only minor changes. This is not 

surprising as the rules indicate the relationship between 

error~ change in error and control action "that exists in most 

dynamical plants. This relation is mainly one of monotonicity 

between the outputs of a pJ.ant and the input applied to it. 

What is more of interest is that in most studies it is found 

that this form of controller is far less sensative to parameter 

changes within the plant than the classical 2-term controller. 

At this stage only a qualitative explanation can be offered 

'for this. It appears that the former is a reasonable controller 

as it relies on the underlying relationships between the plant 

outputs and inputs whereas the latter is a pedantic controller. 

in which the action is computed as a linear combination of the 

measurements and thus more susceptible to parameter changes. 

It is the first conclusion above, however, which is more 



8 5::. la / 13 If 

important. Approximate Reasoning approach outlined here is 

obviously applicable to other areas as well. The one that 

has been considered is the design of traffic signal controllers. 

Application to more obvious areas of decision making in complex 

and humanistic system will no doubt be attempted in future. 

If the method described above is applied to these other areas 
, 

then the likely sources of difficulties to be encountered can 

be attributed to one main factor. This is that the quality of 

decision is only as good as the relation R from which it is 

inferred. R in turn is affected by three factors. 

First, it is affected by the set of rules in the protocol. 

With more complex situations a good protocol is not easy to 

derive. A great deal of investigatory effort normally referred 

to as human factors in control is devoted to exactly such matters. 

Unlikely as it may seem, the human being does not always find it 

easy to verbalise his considerations during decision making. 

The only mitigating factor here is that it is far more difficult 

to determine the decision heuristics in a,form amenable to 

treatment by a branch of precise mathematics than it is to derive 

rules for linguistic synthesis. 

Second factor affecting the quality of decision (though not 

R itself explicitly) is the underlying range of elements in the 

support set which provides the context for interpreting the 

linguistic rules. This can be illustrated by noting that 

I 'tall people' in a land of pygmies is likely to have the support 

set of range of height from 3 to 5 ft. 6in say whereas the more 

normal range of height may be say from 4ft. to 7ft. Such 

considerations are implicit in any application and are equivalent 

to what a control engineer would term the gains applied to each 

variable. 
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Finally, R is affected by the membership values in the 

fuzzy subse1...s defin;.ng the linguistic values. This is 

perhaps the least important of all the factors because the 

degree of change permitted here is limited as too much change 

in the membership values of a fuzzy subset is likely to affect 

the linguistic meaning ascribed to it. This is illustrated 

in figure 5 in wbi.ch the effect of given linguistic value 

(bold line) is altered by using a different linguistic value 

(as in a ), increasing the gain thus decreasing the range of 

the support set (as in b) and lastly in a minor way by 

adjusting the defining values of the fuzzy subset. 

4. A Recipe for a Prescriptive Approach 

4.Z. An EarZy Implementation 

As mentioned ea.rlier, the main difficulty that arises is 

. that a good decision requires that a good set of rules are 

described at the beginning. In any application of reasonable 

complexity this is not easy to achieve. Indeed it i~ quite 

possible that for some reason a protocol cannot be obtained at 

all. This may be due to the complexity of the plant (e.g. 

non-linearities) or to the fact that the operator cannot 

verbalize his decision process adequately or no consistent 

protocol can be found. However, the goal in any application 

and a set of assumptions regarding that application can often 

be much easier to state. This fact motivates investigations 

into so called learning or adaptive systems. 

In the control situation the goal is simply to bring the 

output to the set-paint and keep it there, the only assumption 

being that the plant input and output are monotonically related. 

This monotonicity relation enables wrong control actions to be 

corrected. If the output is too high then too much input was 
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applied and vice versa and so the proper amount of input 

required can usually be inferred backwards from the stated 

goal. An early attempt at implementing one such prescriptive 

system_ is described here. 

'rhe overall schematic diagram for the control system is 

shown in figure 6. The whole system consists of tvlO 

heirarchical levels. '1'he nigher contains the goal which is 

effectively a bound within which the output is to be maintained. 

This band, figure 7, is specified by a set of fuzzy rules whose 

input is time from the start of control and set point deviation 

i.e. the error signal. The output from t.he rules speci fy the 

ch~nges to be made in the controller. For example:-

a) IF Time is Small AND Error is Negative Big THEN Desired 

change is Big. 

b) IF Time is Big AND Error is Positive Zero THEN Desired 

change is Zero. 

The band can therefore be viewed as a set'of local performance 

criteria which the response must satisfy. 

The output from these Uteaching" rules alters the lower 

level control rules appropriately. Since the control rules are 

of the form A.+B.+C., the modification is effected by first 
~ ~ ~ 

finding the linguistic values Ai and Bi which best describe 

the plant state for which a change in action is desired. This 

'search is simply carried out by a supremum operation over the 

range of linguistic values. The action, Ci , corresponding to 

that control rule is altered by the amount given by the If teaching" 

algorithm. If no such rule exists then onc is generated. 

l"'igurc 8. shows results obtained from applying this scheme. 

The tables are a method of displaying all the linguistic rules 
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of the controller. tl'he measurement error and change in error 

are given on the axes and the entries indicate the actions 

applied. The 3bbreviations are as stated in the footnote 

on page 5. 

The rules in figure 2(a) (withoul the asterisk) are the 

best designed rules of an experienced operator. On applying 

the above procedure the controller converges (i.e. thFre are 

no more requests for modification of rules) by creating the 

. extra rules marked with an asterisk. Convergence in this 

sense means that if the system under question is controllable 

within the prescribed band, then the rules will converge to a 

solution in a finite number of :training steps. On starting 

with no rules at all and then applying this procedure, 

convergence takes place to the set of rules shovm in figure 2 (b) . 

The output trajectory was observed to be marginally better in 

the second case. The output response of both these policies 

fit the prescribed band. When the band is narrowed then no 

convergent policy is found but the response tends to remain 

within the band. This lack of convergence could be attributed 

to the 'credit assignment' problem which could be tackled by 

the 'bootstrapping 1 technique. Furthermore, lack of convergence 

could also be attributed to the failure in including sufficient 

state variables of the plant in the controller. 

These modifications are currently being included and are 

the subject of further experiments. 

4.2. A~ AZternative Approaoh 

The prescriptive apprQach described above is very much an 

ad hoc implementation. It serves to illustrate what needs to 
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be done to go beyond a simply descrirtive system. v~hat is 

desired is thnt such an approach should appear naturally in 

a suitably improved fuzzy logic theory itself. This is 

especially relevant to the way in which a chB~ge demanded by 

the higher or 1 teaching' algorithm is transmitted to the 

lmver one. 

The general philosophy 'of this approach is shown in 

figure 9. whicih depicts a very general learning system. The 

concept of the membership function enables the set of rules to 

be expressed as a data base and the lingu:U:;tic input value as 

input data. All operations that are required are carried out 

on this nwnerical data and are retranslated into a linguistic 

output value or a ne\,l set of rules only when it is necessary to 

present the results. The idea of the membership function 

interfaces beh'leen the imprecise heuristics and the exact 

numerical data which describes them. 

In the early implementation described above the method of 

transmitting the change from the higher to the lower algorithm 

was achieved by reverting to the linguistic rule text and 

substituting certain linguistic names by others or generating 

new ones. A much more direct approach _ is to perform 

numerical operations on the overall relation matrix which describes 

the controller according to the change demanded by the teaching 

algorithm. 

:rhe controller relation matrix, RABC ' is changed as follo\·18. 

If for an input At and B1 an action C is required instead of Cl 

then the relation AIXBIXC 1 is removed from RABCand a new relation 
A 

AIXBIXC is included. To effect this the theory of fuzzy logic is 

extended to include operations between relation matrices as well 
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. Once the controller has converged and no more learning 

takes place it is necessary to develop the new rules as 

figure 9. indicat:es. The new relation together with the old 

spreads and tne new ones generated are input to a program 

which outputs the sets belonging to each rule having first 

performed a.minimization. 

This new approach appears more general and direct than 

the earlier one and experimental results (with a batch reactor 

plant) have so far proved encouraging. 

5. Conclusions 

The two prescriptive approaches described above are the 

first step in an attempt to advance further than a purely 

descriptive system using fuzzy-logic theory. If, as is 

suggested here, hierarchical statements are a main requirement 

of such a theory then this means that fuzzy-logic should have 

an auto-descriptive property found in multiple valued logics [10]. 

From the application point of view both a learning situation 

described here as well as decision making in complex systems 

are best framed in terms of hierarchical structures. This is 

very much the direction in which the theory of fuzzy-logic and 

approximate reasoning is likely to go. The work described in 

this paper demonstrates the great potential of applying fuzzy­

logic theory not only to control engineering problems but also 

to management and other humanistic systems. 
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ABSTRACT 

Work done on the implementation of a fuzzy logic 

controller in a single intersection of two one-way streets 

is presented. The model of the intersection is described 

and validated and the use of the theory of fuzzy sets in 

constructing a controller based on linguistic control 

instructions is introduced. The results obtained from the 

implementation of the fuzzy logic controller are tabulated 

against those corresponding to a conventional effective 

vehicle-actuated controller. With the performance criterion 

being the average delay of vehicles it is shown that the use 

of a fuzzy logic controller results in a better performance. 
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INTRODUCTION 

A considerable amount of work has been done on the problem 

of modelling and controlling traffic junctions. Although the 

major problem in cities concerns sets of intersections (not 

\ individual ones) any approach to this problem should· also include 

a sufficient description of the events occuring in any ind,ividual. 

intersection in the linked or disjoint system under study. 

Zadeh's pioneering work on fuzzy sets, by which a conceptual 

framework is provided for dealing with problems of vagueness in 

.the representation of complex processes, can be of great help to 

the task of constructing a controller for such an individual 

traffic intersecti'on. Indeed, the strength of the theory of 

fuzzy sets lies in its capability of rendering a powerful 

conceptual basis for the modelling and analYSis of such processes, 

to which the human approach is characterised by rough approximations. 

Note that, although stochastic and fuzzy logics can both be 

regarded. as derived from a probability logic [1], a stochastic 

approach would. be methodologically different from the. fuzzy 

discipline which has been used here. It seems, therefore, that 

the fuzzy rather than the stochastic approach should be used as the 

domain for the implementation of heuristics. 

Previous work reported in the literature (e.g. [2], [3J, [4], 

[5]) has shown the merits of the theory of fuzzy sets when applied 

to the design of controllers for real dynamic plants, industrial 

processes etc. In this study, the system is a traffic junction 

and the problem of its control is considered as a classical 

example of non-programmed decision making, i.e. decision making 

characterised ?y the lack of well specified analytical means for 

coping with a particular problem. Thus a linguistic control 

algorithm is synthesized capable of dealing with a continuously 
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reproduced decision making situation. The starting point 

is an adequate (though qualitative) knowledge of the system 

and a protocol· of control instructions used by a human 

operator. . A fuzzy set theoretic representation of these 

instructions (which we call Ita fuzzy logic controllerll~ was 

tried as an answer to the control modelling problem, which 

gave very satisfactory results. 

The work done on the construction of the model of 

the system and the implementation of the fuzzy logic 

controller is presented below. In order to validate the 

model a fixed-cycle controller was also simulated. The 

average d~la¥s of the vehicles resulted from the implementation 

of the fuzzy logic controller were compared to those caused 

by an efficient vehicle-actuated one. The results obtained 

show that the performance of the system is better under the 

fuzzy logic controller. 

THE MODEL 

The major assumption concerning the model is that 

the arrivals of vehicles at the intersection are considered 

as being random. Note that this assumption affects not 

only the truthfulness of the model but the selection of the 

control policies as well. The cycle is divided into two 

periods of "effective red" and "effective green" for 

each phase, the first corresponding to the halted traffic 

and the second to the traffic having the right of way. 

A total lost time of 10 seconds per cycle is assumed. 

Vehicles leave the queue at a .constant rate equal to the 
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saturation flow during the effective green (see [6], [7] 

for definitions). The saturation flow equals 3600 vehicles 

per hour at both arms. There is no turning traffic. 

For each successive time unit a pseudo random number 

is generated and compared to some fixed quantity, which is 

equal to the mean rate of arrivals. Thus the arrival of ~ 

vehicle is decided. Let 

1 if a vehicle arrived during the nth unit interval 
qn = { 

o otherwise 

If 0G denotes the number of vehicles not cleared during 

the previous effective green period of a phase, then the queue 

On at the nth time-unit after the beginning of the effective red 

of that phase would be: 

and the total waiting time of the vehicles in the queue would 

be: 

D = n,R 
n 
E 

n =1 
2 

'Let s be the saturation flow, i.e. the rate at which 

vehicles are cleared during the effective green period. 

At the nth time unit after the beginning of the effective 

green, the number of vehicles not yet cleared would be: 

n 
On = z·(QR + E q - s.n) 

nl=l n l 

where QR is the queue which was built up during the previous 

effective red period of the phase, and z is equal to 1 when 

multiplied by a non-negative quantity and 0 otherwise. 
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These vehicles have been subjected to a delay:-

Thus during a cycle, the total delay experienced by 

vehicles travelling along one arm of the intersection would 

be:-

o = 

where OR/R' 0G,G are the delays during Rand G , i.e . . the 

whole effective red and green periods respectively. 

Finally the average delay per vehicle would be:-

d = ° R+G 
L qn 

n=l 

The model just described is quite simple in comparison 

to some more sophisticated ones (see, for example, [8], [9]) 

yet it suffices for the purpose of this work. A measure of 

its reliability was obtained by using a fixed-cycle controller 

which was implemented to the system. The system was subjected 

to a wide range of averages of random vehicles arrivals. 

Each time it was run for 7200 simulated seconds and the 

corresponding average delay per vehicle was calculated. 

Resul ts of the calculations, tog.ether with the expected 

average delays, are given in Table 1. The expected ones 

have been obtained from 

d = 'C(1"'A)2 

2 (l-AX) 
+. 

following formula (see 
if! 

0.65 ( £2) X (2+5A) 
q 

r 6 J ) : 

,~ '-
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where d = average delay per vehicle on the particular arm 

C = cycle time 

A = proportion of the cycle which is effective green 

for the phase under consideration ( =g/c) 

g = flow 

s = saturation flow 

x = degree of saturation (g/As) 

This formula gives the average delay of vehicles arriving 

at random at an intersection controlled by a fixed cycle 

controller. Its first two terms have a theoretical meaning 

while the lastjone is purely empirical. Table 1 shows a fair 

agreement between the calculated delays and those obtained from 

the above formula, thus providing a validation of the model. 

The results of Table 1 actually correspond to optimum 

settings, i.e. optimum cycle and effective green times for the 

respective flow rates according to: 

Co 
'1.5L + 5 = 1 - y 

gl = Yl (co -L) y 

g2 = Y2 
(co -L) y 

where Co = optimum cycle time 

g = effective green time 

y = g/s 

y = Yl + Y2 

L = total lost time per cycle (10 seconds) 

It should be noted that the delays of Table 1 correspond 

to random arrivals having fixed averages. In other words, 
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should the average rates of arrivals be (lifferent from those· 

for which optimum settings have been found and used for the 

control of the in~ersection, the resulting delays would also 

be different from·t.hose of Table 1. The use of timet;'s, for 

tuning the controller in order to adjust its settings to the daily 

flow pattern, would not be an easy task. Sonsequently the~ 

actual delays occuring in any intersectionicontrolled by 

fixed-cycle controllers would be by far in excess of those 

shown in Table I, especially in cases of heavy traffic. 

In the case of vehicle actuated controllers, the results 

of Table 1 correspond to those which should be expected with 

an efficient vehicle actuated installation [7). That is, a 

vehicle actuated controller with speed timing or with a low 

fixed extention operation would result in delays as those of 

Table 1 for the respective flow rates. These delays were the 

basis for the comparison between vehicle actuated controllers 

and the fuzzy logic one (a fixed-cycle controller for a 

single intersection is .scarcely worthy of comparison). 

The system control process is shown in Figure 1. The 

intervention of the controller takes place every 10 seconds 

during each phase's effective green period; the first 

intervention taking place just after the first 7 seconds of. the 

period. At each intervention the length of the extension 

of the effective green time for the phase having the right 

of way is decided. Information concerning the.flow pattern 

is collected by detection pads, which, it is assumed, have 

been installed before the traffic lights in both arms of 

the intersection. The. role of the detection pads is very 

important, as will be made clear in tlie sequel. It was 

assumed for the calculations that the flow pattern, as detected 
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at the pads, is preserved throughout the period after each 

intervention for the phase having the right of way. The 

distance between the pads and the stop lines is sufficient 

for the controller to be informed about the arrivals of 

vehicles in both arms of the intersection during the next 

ll~ seconds, assuming that the effective green ends at the 

middle of the 3 seconds amber period. 

Thus vehicle i passing over the detectors is registered 

in the following way:. Its speed v. is calculated. 
1 

AssU1Jling 

that its speed is preserved constant during its trip from 

the detectors to the junction, vehicle i will be at the 

"critical pOint" in (L/vi -1.5 secs) time (see Figure 2). 

The "critical pOint" is the p6int where, should the lights 

turn to amber, it would be possible for the vehicle just to 

pass. Let 

N. = L/v. - 1.5 secs 
l' 1 

be the number of seconds required for the vehicle to arrive 

at the critical pOint. N. indicates the position of 
1 . 

vehicle i in the flow pattern array for the next 10 seconds 

interval. The control input parameters are two continuously 

updated arrays corresponding to the halted traffic and the 

traffic having the right of way. 

THE FUZZY LOGIC CONTROLLER 

In order to make our exposition self-contained, some 

of the basic definitions of the theory of fuzzy sets([lO], [llJ) 

which were used to model the control algorithm, are given below. 

A fuzzy set F of a .Universe of Discourse U~{x} is defined 

as a mapping ~F(x):U~[O,l] by which each x is assigned a number in 
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[O,lJ indicating the extent to which x has the attribute F.Thus, 

if x is the .number of vehicles in a queue, then "small" may be 

considered as a particular value of the fuzzy variable "queue" and 

each x is assigned a number ~SMALL(x) E [0,1] which indicates the 

extent to which that x is considered to be small. 

Given the fu~zy sets A,B or U, the basic operations on 

A, Bare: 

(i) The complement A of A, defined by 

~A(X) = 1 - ~A(x) 

(ii) The union AUB of A and B, defined by 

~AUB(X) = max·{~A(x)'~B(x)} 

(ili) The intersection AnB of A and B, defined by 

A fuzzy relation R from U~{x} to V~{y} is a fuzzy set on 

the Cartesian product UxV, characterised by a function ~R(x,y), 

by which each pair (x,y) is assigned a number in [0,1] indicating 

the extent to which the relation R is true for (x,y). There are 

several ways of constructing ~R(x,y). The one used here will be 

seen later. 

Finally given a fuzzy relation R from U to V and a fuzzy 

set A on U, a fuzzy set B on V is induced, given by the compositional 

rule of inference:· 

or 

B = AOR· 

~B(Y) = max {min{~R(x,y) '~A(x)}} 
x 

A heuristic approach to the control pr~blem was employed, 

which resulted in a s~t of linguistic control statements. The 

above basic· ideas of the theory of fu'zzy sets were used for the 

quantitative interpretation of these instructions as well as the 

decision-making process. 
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The fuzzy control instructions 

are of the 

If 

Then 

If 

and 

and 

and 

and 

form: 

T = medium 

A = mt(medium) 

Q = ·It(small) 

E = medium 

T = long 

A = mt(many) 

(see 1.ppendix for a complete 

Then 

Else etc. 

Q = It(medium} 

E = long 

where T = the fuzzy variable Ittime", which is assigned values 

like livery short", 11 short" , '''medium'' etc. 

A = the fuzzy variable "arrivals" i.e. the number of 

vehicles arriving at the arm having the right of 

way, which may be assigned values like "many", 

"more than a few" etc. 

Q = the fuzzy variable "queue", which is assigned 

_values like "any", "less than small" etc. 

E = the fuzzy variable "extension", which is identical 

to "time" 

The terms "medium", "more than medium", "less than small" etc. 

are labels of fuzzy sets defined on the relevant universes of 

discourse T,A,Q,E. Tables 2, 3 and 4 show the fuzzy sets used 

in this application. Further to' the above basic operations, in 

this application we have introduced the operators "mt" and "It", 

standing for "more than" and "less than" respectively. These are 

defined as follows: if A is a fuzzy set defined on U =. {xi}' llA (Xi) 

is its grade of membership function and Xo is the element of U for whic~ 
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and mt (A) 
~A(xi) is maximum, then It(A)~are fuzzy sets defined on U such that: 

~lt(A} (Xi) = 0 for xi>xo 

= 1 - ~A{x~) for X.<X 
.L ~ 0 

= l·"-·ll (x.) for x.>x . A ~ ~ 0 

The result of these operations on the fuzzy sets of Tables 3 and 

4 above is shown in Tables 5 and 6. 

Obviously 

or 

It(A) or mt{A} = not (A) 

It(A) and mt(A} = 0 

max{~lt(A) (xi) l~mt(A) (xi) }=l-~A (xi) 

miri{~lt(A) (xi)'~mt(A) (xi)} = 0 

Note that if a fuzzy assignment like "A = small" is 

characterised by the poor content of the information conveyed, 

a fuzzy assignment like "A = less than small" is conveying even 

less information. In other words, fuzzy assignments like 

itA = less than small" are used whenever the grade of fuzziness is 

high. 

.IAny" is considered as a fuzzy set with all the elements of 

its universe of discourse been assigned a grade of membership 

equal to 1. 

A total of 25 rules were used (5 for each intervention). 

Every rule is a fuzzy relation between the inputs T, A, Q. 

and the output E. The connectives "andll and "else" are interpreted 

as the operators IImin" and "max" respectively. Thus:-

T = very short 

and A = mt(none) 
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is a fuzzy phrase P (see [12] }defined on the universe of 

discourse TxAxQ with grades of membership function 

]J ( t, a , q) =min { ]J ( t) 11 (a) 11 () } 
P . . v.short I~mt(none) '~any q 

The fuzzy implication "if P then E = very ohort" is also a 

fuzzy phrase R defined on TxAxQxE with grades of membership function 

llR (t,a,q,e) =min{llv.short (t) ,llmt(none) (a) ]Jany (q) ,llv.short (e)} 

Finally two or more fuzzy implications R,S •••. , connected by 

11 else" form a fuzzy clause C defined on TxAxQxE with grades of 

member~hip function 

llC<t,a,q,e>=max{PR(t,a,q,e),]Js(t,a,q,e), ••• } 

In this application, since each fuzzy rule is represented 

by a 4-dimensional matrix, the fuzzy algorithm employed at each 

intervention for deciding the control action is represented by the 

union of 5 such matrices, as five rules operate at each intervention. 

25(5~5) rules given in the appendix thus provide for a maximum 

of 5 interventions (each consisting of 5 rules) taking place at 

7th, 17th, 27th, 37th and- 47th second. Thus the maximum possible 

effective green time is 57 seconds. At each intervention the 

5 rules are invoked in the manner described below 10 times (i.e. 

for each of the next 10 seconds). Note that, as the detecting 

pads are sufficiently far away from the junction, at each 

intervention, data is available for each of the next 10 seconds. 

Consider now the (ti,aj,ak,el ) entry of the matrix C2 ' corresponding 

to the algorithm used at the 2nd intervention of the controller, 

where: 



t. = 8 
1. 

a = 4 j 

= 5 

(i.e. we consider the next 8 seconds) 

(i.e. 4 vehicles will cross the critical 

pOint if no change of the current state 

of the system occurs during the next 8 

seconds) 

(i.e. 5 vehicles queue will build up if ~o 

change of the current state of the system 

occurs during the next 8 seconds). 

(i.e. the extention given to the present 

state of the system is 8 seconds) 

!;·1//"3 

The first control statement Rl for the second intervention 

(see appendix) is: 

If T = very short 

and A = mt (none) 

and Q = any 

then E = very short 

From Tables 2,' 5, 6 we have: 

Thus 

~v.short (8)- ~ 0.0 

Pmt{none) (4) = 1.0 

= 1.0 

~R (8,4,5,8) = min{~v.short(8) I~ mt(none) (4), 
1 

= min{O,l.O,l.O,O} = 0 

Similarly we find 
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llR (8,4,5,8) = min{llshort(8) ,llmt (a 'few) (4), 
2 

lll t (v.short) (5) ,1lshort (8)} 

= min{O,.9,.5,O} = 0 

llR3 (8,4,5,8) = min~Ymedium(8)'llmt(few) (4), 

lllt(v.short} (5),llmedium(8)} 

= min{0,.8,.S,0} = 0 

llR4 (8,4,S,8) = min{1l1ong(8) ,llmt(medium) (4), 

lllt{v.short} (5),lllOng(8)} 

= min{.S,.S,.S,.S} = .S 

llRS (8,4,S,8) = min{llv.long(8) ,llmt(many} (4), 

lllt(short) (S) ,llv.lOng(8)} 

= min{.S,0,1,.5} = 0 

THE PROCEDURE FOR DECIDING THE CONTftOL ACTION 

Having determined the entries of the matrix corresponding 

to the algorithm for each intervention, the process of inferring 

the control action is carried out as follows. 

For each successive time unit (=1 second) for the next 10 secon( 

data concerning vehicles crossing the critical point and vehi~les 

added to the queue are used as inputs to the algorithm matrix 

in use. The corresponding entry of the matrix is thus determined. 

This entry is a measure of the confidence with which the 
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algorithm may be applied, for the corresponding data. Obviously, 

that extension will be selected which corresponds to the maximum 

degree of confidence. In other words,· fuzzy predictive 

decision making implies that, that action is selected which 

.' ~ :;:- minimizes fuzziness. Thus, given a set of fuzzy rules choose the 

one which is provided for coping with conditions as similar 

to the actual ones as possible. And, given a set of alternative 

actual conditions, consider those which are as similar to the 

conditions, for which the algorithm provides, as possible. 

The explicit description of the procedure for deciding 

the control action is given below, by means of an example. Thus 

we consider the controller's 2nd intervention. Arm N-S has the 

right of way. There are 5 vehicles queued at E-W arm. Data, 

concerning number of vehicles crossing the critical point 

(N-S traffic) and queued (E-W traffic) at each successive time 

unit during the next 10 seconds, is summarized in arrays a and 

at respectively. 

a = (0 1 0 1 1 1 1 0 0 1) 

a t = (0 1 0 0 1· 0 0 1 0 0) 

From a, at arrays e, et are constructed 

e- (0 1 1 2 3 4 5 5 5 6) 

e' = (5 6 6 6 7 7 7 8 8 8) 

as follows: if the ith elements of a and e are ai' b i respectively, 

it is 

i 
t a. 

j=l J 

and if the ith elements of at and et are ai, bi respectively, 

it is 



b! 
1. 

i 
= Q + 4 al. 

j=l J 

15 

where Q is the present queue at E-W arm. For example, if no 

change of the current state of the system occurs during the next 

6 seconds, it is seen (from Sand S') that 4 vehicles will cross 

the critical point and there will be a total of 7 vehicles in 

the queue at E-W arm after 6 seconds from now. 

The ith elements of arrays S, a', i=l, ••• ,lO, determine 

the appropriate entry of the algorithm matrix C2 ' which indicates 

the applicability of the algorithm to the situation described 

by these elements of the arrays. Thus, for t=l second (i.e. 

considering an extension of 1 second) we have that no vehicle 

will cross the critical point (first element of array S) and that the 

queue will remain the same (5 vehicles, first element of array et). 

It is easy to show that the rules of the algorithm are assigned 

the grade 0, and, consequently, the algorithm is assigned the 

grade 0 for t=l second. The results 'have been summarized in 

Table 7. Obviously, the controller will select the extension 

of 10 seconds. Thus, the state of the system will remain the 

same for the next 10 seconds and the above procedure will be 

repeated (with new a and el) at the end of the 10 seconds 

period. If the extension given to the present state of the 

system were less than 10 se~?nds, the state of the system 

would change at the end of the extension period. 

Note that if all the entries of the last row of Table 7 

were less than 0.5, no extension would be given and the state 

of the system (i.e: the phase) would be immediately changed. 

Finally, if the maximum of the entries of the last row 

were not unique, i.e. if two or more alternative extension 

periods were indicated, then the maximum of these alternative 

extension periods would be selected. Of course, some other rule 



might be used instead (e.g. one giving the minimum extension 

period or the median or one randomly selected among these 

alternatives). For this, however, another control algorithm 

would be required in the place of the one used in this 

implication, which was based on the rule giving the maximum 

extension period. 

RESULTS AND FINAL REMARKS 

Because of the random nature of the arrivals assumed, 

many runs of the model were needed, in order to get reliable 

results. The simulation work was carried out on the ICL-1900 

general purpose computer. 

The results have been summarised in Table 8, whence it 

is clear that the system's performance 'is best under the 

fuzzy logic controller for all possible combinations of flow 

rates. Note that the effectiveness of the controller, as 

indicated by the percentage improvement in delays, is not 

seriously affected by the total volume of traffic through the 

junction. 

These results have been obtained after several modifications 

of the control instructions initially set. The trial 

and error method was used in order to obtain an effective set 

of rules (or what is termed "satisfying control" in Management 

Science). In other words, a learning procedure was employed, 

by which the human performance in a similar real life situation 

of controlling a t+affic junction is derived. 
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It is interesting to note that, having defined (in 

terms of fuzzy sets) what was considered to be a "small 

queue" or "few arrivals ll
, it was the rules rather than the 

fuzzy sets which were modified. It is quite apparent that 

if the parameters describing the membership functions,were 

introduced as additional inputs to the decision concerning 

the control algorithm, the dimensionality of the problem 

would radically increase, thus imposing severe difficulties 

in the obtainment of its solution .. 

The question of stability has been part of the whole 

problem of obtaining what is termed "effective set of rules ll
• 

In this particula~ application, the stability of the system 

is defined as the condition of the system not getting 

saturated if subjected to a wide range of flow rates. 

As far as fuzzy set th~ory is concerned, its basic 

concept, "fuzziness", characterises only a state of 

knowledge.; It exists neither in the system nor in the 

controller but in the human mind. Although the controller 

which ~as actually designed is termed "a fuzzy logic· 

controller", it actually acts deterministically. That is, 

the algorithm by means of which the decision is taken, 

. although conceived in fuzzy, linguistic terms, is not 

fuzzy after the actual design is completed, i.e. ~fte~ the 

fuzzy sets and implL:::.:::t:i::ions are established [131. 

It is hoped that further work will be done on the 

. problem of controlling traffic by use of the theory of 

fuzzy sets. It must however be kept in mind that the 
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fuzzy logic controller was designed for the purpose of 

controlling traffic characterised by rCl.ndomness. In a 

linked system the traffic would be modu.laLed. This should 

be taken into account when considering a controller for an 

intersection being part of a whole network, forming an 

integrated control system. On the other hand special 

problems would arise in this case owing to the hierarchical 

structure of the system and consequently the control policy 

itself. It is thought also that in the case of integrated 

traffic control systems the theory of fuzzy sets would show 

its'merits much more so than in the present simple case of 

an individual intersection. 
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APPENDIX i 

THE. FUZZY ALGORITHM 

INTERVENTION: 7nth second 

If T=very short 

and A=mt(none) 

and Q=any 

then E=very short 

ELSE 

If T=short 

and A=mt (a few) 

and Q=lt(very small) 

then E=short 

ELSE 

If T=mediurn 

and A=mt (few) 

and Q=lt(very small) 

then. E=mediurn 

ELSE· 

If T=long 

and A=mt (medi urn) 

and Q=lt(very small) 

. then E=long 

ELSE 

If T=very long 

and A=mt(many) 

and Q=lt(very small) 

then E=very long 
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INTERVENTION:17nth second 

If T=very short 

and A=mt (none) 

and Q=any 

then E=very short 

ELSE 

If . T=short 

and A=mt Ca few) 

and Q=lt(very small) 

then E=short 

ELSE 

If T=medium 
"t: 

and A=mt (few) 

and Q=lt(very small) 

then E=mediwn 

ELSE 

If T=long ... 
and A=mt (medi um) 

and Q=lt(very small) 

then E=long 

ELSE 

If T=very long 

and A=mt (many) 

and Q=l t (small) 

. then E=very long 

INTERVENTION: 27nth second 

If T=very short 

and A=mt(none} 

and Q=any 



.L.L.L .:> • 11 /17ft. 

then E=very short 

ELSE 

If T=short· 

and A=mt (a few) 

.~. and Q=lt(very small) -;". 

then E=short . 
ELSE 

If T=mediurn 

and A=mt (few) 

and Q=lt(very small) 

then E=medium 

ELSE 

If T=long 

and A=mt (medi urn) 

and Q=lt(very small) 

then E=long 

ELSE 

I; T=very long 

and A=mt(many) 

and Q=l t (small) 

then E=very long 

INTERVENTION: 37nth second 

If T=very short 

and A=mt(none} 

and Q=any 

then E=very short 

ELSE 

If T=short 

and A=mt(a few} 

and Q=lt (small plus) 



ELSE 

ELSE 

ELSE 

then E=short 

If T=medium 

A=mt (medium) 

and Q=lt(small plus) 

then E=medium 

If 

and 

and 

then 

If 

and 

and 

then 

T=long 

A=mt(many) 

Q=lt (medium) 

E=long 

T=very long 

A=mt(too many) 

Q=lt(long 

E=very long 

INTERVENTION: 47nth second 

If T=very short 

and A=mt (none) 

and Q=any 

then E=very short 

ELSE 

If T=short 

and A=mt(a few) 

and Q=lt (long) 

then E=short 

ELSE 

If T=mediurn 

and A=mt (medi urn) 

and Q=lt(long) 

,::>,"/,15 
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then E=medium. 

ELSE 

If T::-:::long 

and A::-::mt(too many) 

and Q=lt(very long) 

then E=long 

ELSE 

If T=very long. 

and.:, A=mt{too many) 

and Q=lt(very long) 

then E=very long 



TABLE 1 

Average delays with fixed~ycle controller 

and optimum settings 

N - S traffic E - W traffic Delay 

(secs/veh) 

(veh/hr) (veh/hr) Model Formula 

360 360 7.2 7.4 

360 720 7.4 7.9 

360 1080 7.9 8.4 

360 I 1440 8.4 9.0 

360 1800 9.3 10.2 

360 2160 12.3 12.9 

360 2520 15.8 , 18.9 

720 720 9.7 10.0 

720 1080 10.8 11.6 

720 1440 12.7 13.8 

720 1800 15.9 17.3 

720 2160 21.8 24.9 

1080 1080 13.6 14.9 

1080 1440 17.9 19.7 

1080 1800 25.8 29.2 

1440 1440 27.3 30.7 .. 

Error 

~ 

-,2 

- 6 

- 5 

- 7 

- 9 

- 5 

-17 

- 3 

- 7 

- 8 

- 8 
.- ':'12 

- 9 

- 9 

-11 

-11 

-



TABLE 2 
Fuzzy sets defined on Time (or Extension) 

time 
(secs) , 

Fuzzy set 1 2 j 4 5 b 7 8 9 10 

" 

very short 1 .5 0 0 0 0 0 0 0 0 

short 0 .5 1 .5 0 0 0 0 0 0 

medium 0 0 0 .5 1 .5 0 0 0 0 

long 0 0 0 u 0 .5 1 .5 0 0 

very long 0 0 0 0 0 0 0 .5 1 1 

, . 

~ --
" -'-J 

~ 



TABLE 3 

Fuzzy sets defined on Arrivals 

~ . (veh) 
1 2 3 4 5 6 

E'. sets 

none .5 .2 .1 0 0 0 

a few 1 .5 .2 .1 0 0 

few .5 11 .5 .2 .1 0 

medium .2 .5 1 .5 .2 .1 

many .1 .2 .5 1 .5 .2 
, 

;( 

too many 0 .1 .2 .5 1 .5 

7 8 

0 0 

0 0 

0 0 

0 0 

.1 0 

.2 .1 

9 

0 

0 

0 

0 

0 

0 

-

10 

0 

0 

0 

0 

0 

0 

~ 
~ , 
" ..J 

""() 



~ (veh) 4 5 6 '7 8 9 

f.sets 

very small o .5 .7 .9 .1 .9 

small 0 0 0 0 o .5 

small plus 0 0 0 0 0 0 

medium 0 0 0 0 0 0 

long 0 0 0 0 0 0 

very long 00 0 0 0 0 

--_.- ----

TABLE 4 

Fuzzy sets defined on Queues ' 

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

.7 .5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

.7 .9 1 .9 .7 .5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 o .5 .7 .9 1 .9 .7 .5 0 0 0 0 0 0 0 0 0' 0 0 0 0 

0 0 0 0 0 0 o .5 .7 .9 1 .9 .7 .5 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 o .5 .7 .9 1 .9 .7 .5 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 o .5 .7 .9 1 .9 .7 .5 0 

--_.- --_.- ~--- ---_.- --_.-

• 

• 

I 

v 
... 

...... 
... 
Cl 
( 



TABLE 5 

"more than"-operation on the fuzzy sets of Table 3 

I:::~ ehic1es) 1 2 3 4 5 6 7 8 
fuzzy sets 

mt(none) .5 .8 .9 1 1 1 1 1 

mt(a few) 0 .5 .8 .9 1 1 1 1 

mt(few) 0 0 .5 .8 .9 1 1 1 
'" 

mt(medium) 0 0 0 .5 .8 .9 1 1 

mt(many) 0 0 O· 0 .5 .8 .9 1 

. 
mt (too many) 0 0 0 0 0 .5 .8 .9 

'- ~-

9 

1 

1 

1 

1 

1 

1 

10 

1 

1 

1 

1 

1 

1 .. 

, 

, 

I 

~ 

:::::: 

" ....... ....... 



~ (veh) 
4 5 6 7 

f. sets 

It (very small) 1 .5 .3 .1 

It (small) 1 1 1 1 

It (small plus) 1 1 1 1 

It (medium) 1 1 1 1 

It (long) 1 1 1 1 

1t(very long) 1 1 1 1 

TABLE 6 

"I!.ess than" - operation on the fuzzy sets of Table 4 

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

~ "-

0 0 0 0 0 0 0 0 0 0 0 0 

1 .5 .3 .1 0 0 0 0 0 0 0 0 

1 1 1 1 1 .5 .3 .1 0 0 0 0 

1 1 1 1 1 1 1 1 '1 .5 .3 .1 

1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 00 0 0 0 

0 0 0 0 0 0 0 0 

1 .5 .3 .1 0 0 0 0 

1 1 1 1 1 .5 .3 .1 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

~ 
~ 
~ 
~ 
~ 



TABLE 7 

Decision Table for the control action 

Fuzzy Control Statement Time (seconds) 

time passing queue 
1 2 3 4 5 6 vehicles 

very mt(none) any 
0 .5 0 0 . ·0 0 short 

short mt(a few) It {very 
0 0 0 .3 0 0 short) 

IIledi UIT! mt (few) It (very 
0 0 0 0 .1 .1 short) , 

long mt (medium) It (very 
0 0 0 0 0 .1 short) 

very mt(many} It (short) 
0 0 0 O. 0 0 long 

Fuzzy :~lgori thm 0 .5' 0 .3 .1 .1 

7 8 

0 0 

0 0 

0 0 

.1 0 

0 .S 

.1 .5 .. 

9 

0 

0 

0 

0 

.5 

.5 

. 10 

0 

0 

0 

0 

• 8 

.8 

.'1 
~ 

" ..... 
~ 
V\l 



TABLE 8 5:. JIII '61f 
Comparison between delays caused by an 

efficient vehic1e~actuated controller and the fuzzy-logic one 

N - s traffic E _·w traffic 'Average over.all delay Improvement 

(secs/veh) 
(veh/hr) (veh/hr) % 

Vehicle-actuated Fuzzy-logic 
controller controller 

360 360 7.2 5.7 +21 

360 720 7.4 6.1 +18 

360 1080 7.9 6.6 +17 

360 1440 8.4 7.3 +13 

360 1800 9.3 8.4 +10 

360 2160 12.3 10.0 +19 

360 2520 15.8 13.6 +14 

720 720 9.7 7.4 +21 

720 1080 10.8 8.8 +19 

720 1440 12.7 10.9 +14 
-

720 1800 15.9 14.1 +11 

720 2160 21.8 18.5 +15 

1080 1080 13.6 12.0 +12 

1080 1440 17.9 15.4 +14 

1080 1800 25.8 21.6 +16 

1'440 1440 27.3 22.9 +16 



· Ut 

hJ k, 

h2 ~ 

u
2 

Figure 1. The system control 
process 

P. processing of vehicles within the junction 
~ 

,along route i 

Ri regulating function (signal setting) 

Hi data processing 

K optimizing function (control algorithm) 

ui vehicles on route i entering the junction 

11 11 
It leaving " 11 

C, 

Cd 

Yij subproce~s's Pi interaction with subprocess P j 

c
i 

premeasured data concerning c i (saturation flow). 



~L 

L 

detecting pads 

FIGURE 2. T.ime-space diagram. 

5:. 11 11~6 

x : critical 
points 

t 



~. J'2.. / ' 'l7 

FUZZY RELATIONAL EQUATIONS AND THE INVERSE PROBLEM 

by 

C P P . t d M sugenott • • app~s an . 

tDepartment of Electrical and Electronic Engineering, 
Queen Mary College, University of London, 
Mile End Road, LONDON El 4NS 

ttDep~rtment of Control Engineering, 
Tokyo Institute of Technology, 
Oh-okayama, Meguro-ku, Tokyo 

\. 



SUMMARY 

The inverse problem concerned with fuzzy relations is 

investigated. The conditions for the existence of a solution 

are shown and an analytical solution is given. A method for the 

improvement of the solution is proposed. 

\ 



1. INTRODUCTION 

This paper is related to Sanchez's (1976) work on fuzzy 

relational equations. He dealt with the problem "Given two 

fuzzy relations'QCU x V and seu x W, find ReV x W such 

that ROQ = SIt, where 0 denotes maxmin composition. He showed 

an existence condition of the solutions by giving the le,ast 

upper bound of the solutions. In general, the set of all the 

possible solutions for the above equation forms an upper semi 

lattice. Therefore, the greatest lower bound does not always 

exist. 

The paper discusses the problem called the "inverse 

problem" I "Given a fuzzy relation RC U x V and a fuzzy subset 

BCV, find all ACU such that AoR = Blit Although it is a 

special form of Sanchez equation, this fuzzy relational 

equation is widely used because of its simplicity and it is 

also very useful in practical applications {see Zadeh (1973), 

Mamdani and Assilian (1975), Pappis and Mamdani (1976». 

For example, a set of fuzzy implications (or fuzzy conditional 

statements) of the form "If Ai then Bi' iEI" can be conveniently 

expressed by the union of Cartesian products R = U Ai X B., 
iEI 1. 

Ai C U, Bi CV, iEI. Given A C. U I then BC V is induced, 

according to the fuzzy relational equation AOR = B. 

The paper gives a different type of the existence conditions 

of the solutions, which is related to the lower bounds of the 

solutions. The lower bounds are analytically obtained by 

the method presented in the paper. Thus, when a fuzzy system 

is described by a relation matrix R associated with the maxmin 

compositional rule, the set of all the possible inputs A's, 

which give the same output B, can be obtained by combining 

the least upperbound and a number of the lower bounds. 



2. STATEMENT OF THE PROBLEM 

Denote a fuzzy subset A of U ==' {ui/i==l, .•• ,m} by 

a fuzzy subset B of V =='{v./j=l, ••• ,n} by 
,J 

and a fuzzy relation R of U x.v by 

R = {( (u.,v.) ,r .. ) /i==l, •.• ,m, j=l, ••• ,n} 
~ J ~J 

where a., b. and r., are the grades of membership of u'" I v]' 
~ J ~J ..... 

and (u., v.), respectively. 
~ J 

The composition of A with R, denoted by A 0 R, is defined 

to be a fuzzy subset B associated with the grades of membership 

Our problem can be stated as follows: 

"Given R and B, find all A I s such that A 0 R==B". 

3. EXISTENCE OF A SOLUTION 

3.1 Notations 

Let row .vectors ~ == (al a2 ···am), b = (b l b 2 ••• bm), 

c = (c l c2 •.• cn ) and the mxn matrices R == [r. ,], S == [so ,J. The 
- ~J - ~J 

following notations will be used: 

~~b : ai)bi,Vi 

a<b : ai (b i I V i 

aN>: (al",bl a2J\b2 ••• aml\Qm> 



a=O 

R~S ,- -

· · 
: 

· . · 

· · 
: 

3.2 Definitions 

(al v b l a 2 v b 2 •.• am v bm) 

a i =O,-Vi 

V (a.) 
i 1 

r .. ~s .. ; ¥i,-\;;!j 
1J 1) 

r .. , s .. , J.r;f 1, Vj 
1) 1J 

transpose of a 

transpose of R 

In the sequel, small letters x, y, etc. are used to denote 

scalars and when underlined, like ~, b etc., they denote vectors. 

Capital letters R, S etc. are used to denote fuzzy subsets and 

when underlined, like R, S etc., they denote matrices. 

Any scalar and any elements of vectors or matrices are 

assumed to have their values in the interval [0,1]. 

o-composition 

The o-composition of a vector a = (a l a2 •.. a~) with a 

column vector b = (bl b 2 ••• bm) T I denoted by ~ 0 b , is defined 

by the scalar 

~ob f1 V (ai"bi ). 
i 

The o-composition of a row vector a = (al a 2 ••• am) with 

a I'lXI1 matrix R = [r ij] I denoted by ~ 0 R, is defined by the 

row vector 

where r. is the jth column vector of R. 
-J 



?--composition 

The a-composition of a scalar x with a scalar y, 

denoted by xay, is defined by the scalar 

xay A (1' if x~y 
Y if x<y 

T Given a column vector a = (al a2 ••• am) and a scalar x, the 

a-composition of a with x, denoted by ~ax,is defined by the 

column vector 

Given a mxn matrix R = [rij ] and a row vector 

a = (al a2 .•. an), let Ej be the jth column vector of R. Then 

the a-composition of R with ~, denoted by Ra~, is defined by 

the mxn matrix 

Thus Raa is a matrix, Raa = [wij ], where 

w .. = r .. aa .. 
1.) 1.) J 

S-composition 

The S-composition of a scalar x with a scalar y, denoted 

by xSy, is defined by the scalar 

{ 

0 if x<y 

xSy A 
. Y if x)y. 

T Given a column vector a = (al a 2 ••• am) and a scalar 

x, the S-composition of a with x, denoted by ~ax, is defined 

by the column vector 



Given a·mxn matrix R = [rij ] and a row vector 

a = (a l a 2 ••• an ) ~ let rjbe the jth column vector of R. Then 

the S-composition of R with ~, denoted by RS~, is defined by 

the rnxn matrix 

where 

Thus RSa is a matrix, Ra~ 

z. . = r. ·Sa .. 
1J 1) J 

\fl-sets 

= [z .. ], 
1) 

T Given a column vector ~ = (al a 2 ••• am) , such that 

a. = a or 0, i=l, ••• ,m, the set ~(a) of column vectors ~(a) 
1 

is defined as follows: 

where 

~. = 0 or a, i=l, ••. ,m, 
1 

m 
L <P. = a. 

i=l ). 

Thus, if there are k nonzero elements in a, there are 

k vectors in ~(a). Note that ~(~) is defined iff a i = 0 

or !, ~i. 



T Example: Let a = (0 .3 0 0 .3) • Then a = .3 

and a i = .3 or O,~i, thus ~(~) is defined and we have: 

T .3) }. 

;;;> • I _, ' ,..,.. 

Given a mxn matrix R = [r~.], let r. be its jth column ... ] -] 

vector and assume that ~(r.) is defined for j=l, ••. ,n. Then 
-:-J 

where 

o .8 .5 o .8 o 

o o o , o o o • 

.2 o o .2 o .5 

Note that there are z matrices in ~(R), 

n 
z = n z. 

j=1 J 

= rnumber of nonzero 

Zj l 
1, if .Ej = o. 

elements in r., if r. ~ 0 -] -J 



3.3 Some properties of 0, a, f3 compositions and lP-sets 

.Given scalars x, y we have 

P3 xay = yax*>x=y 

P4 xf3y = yf3x~x=y 

Given a column vector b 

we have: 

PS bax~bf3x 

P6 3 !!=!!ob = x (:) 3bi e;b:bi~x 

Given a mxn matrix R and a row vector b = {bl b 2 ••• bn} 

we have: 

Given R, b as above and a row vector a = Ca l a 2 •.. am) 

we have: 

PS aoR = b<:>aor. = b. I V; (r.: jth column vector of R). 
- - -J J .;J -J -

3.4 The necessary and sufficient conditions 

Lemma 1 Given a column vector b 

scalar x, we have 

"3 !!:!!ob = X (:.)(bax) To b = X ~ {b6x} To b = X ~ 

( <t> (be x) ) To b = x, \f <p (bex) e: 4i (be x) • 



Lenuna 2 

Lemma 3 

Theorem 1 

Proof 

Given a row vector ~ = (a l a2 ••• am
), a column 

T vector b = (b
l 

b
2 
••• b

m
) .. and a scalar x, we 

have 

Given a mxn matrix R = [r .. ] and row vectors 
- ~J 

~ = (al a2 ••• am
), b =(b l 'b2 ••• bn

), we have 

~oR = b+~( A(Rah)T (3) 

aoR = b-+3 4'(Rf3b) E4> (Rf3b) : V('<I>(RSb» T,a (4) 

Given a mxn matrix R = [r .. ] and a row vector 
- ~J 

b = (b
l 

b
2 
••• b ), we have -. n 

3~: aoR = b .... A(Rab) To R = b '(5) 

3~:~OR = b«::} 3 <I>(RSb) Eip (Rf3b) : V (<I>(RSb» To R ,;, b 

(6) 

(5): See Sanchez (1976) 

(6): +)~oR = b+ 3 <P(Rf3b} E4> (Rf3b): v( <P(RSb»T,~ (from Lem..'1la 3) 

+ V< </>(RSb}) To R(aoR = b. Let r. be the jth 
- - - - - - -J 

column vector of· Rand <I>(RSb) 

= [</>1 (rlSbl ) <1>2 ( r 2f3b2) ••• <l>n (£nf3bn )] • 

V T T 
Then (<P(gl3~)} = (<I>1(rl Sb1» V •••. 

V ( </>n (rnSbn ) ) T+ V ( cP (EBb) ) T) ( <Pj (£j Bb j ) ) T, 

-V- J,+ V(</>(RBb»~ r.)(</>. (r.Sb.»To r. = b., Jif'j 
- - -J ) -) J -J J 

(from Lemma 1) + V (</>CRab) ) To R1lb. Thus 

b'V(</>(RSb»TOR~b, i.e., V(<P(RSb»ToR = b. - -- -- . -- - -

+) Obvious. 



Theorem 1 states the necessary and sufficient conditions 

for the existencs of a solution of the inverse problem. Thus, 

given a fuzzy relation R from U = {ui/i=l, ••• ,m} to 

V = {vj/j=l, ••• ~n} 

R =' {«u. ,v
J
.) ,r. J') li=l, . •• ,m,j=l, ••• ,n} 

l. l. . 

and .a fuzzy subset B of V 

letR = [r .. ] be the mxn matrix corresponding to Rand 
-. l.J 

b = (bl b 2 " •• bn > the vector corresponding to B. Then the 

necessary and sufficient conditions for the exis.tence of a fuzzy 

subset ACU satisfying AoR = B,are given by either Eq. (5) 

or Eq. (6). 

Obviously the two conditions are equivalent, implying 

each other, i.e •. 

4. SOLUTION OF THE INVERSE PROBLEM 

4.1. cS-composition and its properties 

Given a mxn. matrix R = [r. ,] and a row vector 
- l.J 

b = (bl b 2 ••• bn ), the cS-composition of R with b, denoted by 

Sob, is defined by the mxn matrix 

n 
= ( 1\ (rikabk» S (r , J' Sb,) , 

k=l l. J 
i=l, ••• ,Itl, 
j=l, ••• ,n 

n 
Note that "(rikabk ) is .the ith element of the row 

T k=l . 
vector 1\ (Rab) and r ij Sbj is the (i" j) th element of the mxn 

matrix RSb. Thus Rob can be obtained from A(Rab) T and RSb. 



Example: Let 

• 7 .5 I .5 

R = .5 .2 .7 .6 -
I .s .3 0 

b = (.7 .5 .9 .6) 

\'lehave 

1 1 .9 1 

Rab = I I I I 

.7.5 1 1 

.7 .5 .9 0 

RSb = 0 0 0 .6 

.7 .5 0 0 

and finally 

.7 .5 .9 0 

Rob = 0 0 0 .6 

0 .5 0 0 

Given R, b , we have 

P9· Rob'RSb 

PlO ~ (Rob) C ~ (RSb) 

PII V($(Rob»T, A(Rab)T, ~$(Rob)E«I>(Rob) 

P12 V ($ (RSb» T, A (Rab) T~ $ (RSb) E~ (Rob) 

~ .. /2 /11/'1 



4.2 The solution 

Lemma 4 

Theorem 2 

Proof 

T Given a column vector b = (b
l 

b
2 

••• b
m

) 

and a ~calar x, assume that 3~:~ob = x. Then 

¥ ~: ~ob = x ~ :1 et> (bex) e4> (bex) :. (et>(bex) } T ,a, (bax) T 

(7) 

¥a, \fet> (bex) e<p(bex) : (<I>(bex»T,a'{!2ax)T~~ob = x. 

(8) 

Given a mxn matrix R and a row vector b = (b l b 2 ••• bn ), 

assume that :I ~:~oR = b. Then 

'¥ a;~oR = b ~ 3et> (Rob) e4> (Rob) : V (CP (Rob).) T,~, I\(Rab} T 

(9) 

V~, Vet> (Sob) eel! (Rob) : V (et> (Rob» T ,~, A(Rab) T~a()R= b 

(10) 

(9): ~oR = b+ 3 cP (Reb) Eel! (Reb) : V (et> (Reb) ) T,~, 

A(Rab)T (from Lemma 3)+ 

3 et> (Rob) E<P (Rob): V(CP (Rob) ) T ,~, A (Ra!2) T (from P12) • 

(10) : V (et> (Rob» T~~, A(Rab) T+ V(et> (Reb}) T'a, ACRab) T, 

<I> (Reb) Eel! (Reb) {from PlO} + (et>j (!.j ebj ) ) T ,~, (rjabj ) T , ~j I 

where r. is the jth column vector of R, +aor. 
-J - -J 

= b., ¥j (from Lemma 4)+aoR = b. 
J - - -

The solution of the inverse problem is derived from theorem 

2 as follows: 

Given the fuzzy relation R and the fuzzy subset B, all fuzzy 

subsets A such that AoR = B are given by 



5',1'2.. /2..00 

provided that there exists at least one such A, where 

R: the matrix corresponding to R 

~,b: t~e vectors corresponding to A, B respectively. 

4.3 Example: Let 

~ vI v 2 v3 v 4 Vs 

u 1 .4 0 .9 .6 .8 

R 
u 2 .7 .8· • 3 1 • .5 -
~3 .6 .4 .3 .4 .9 

u 4 .2 1. .5 .8 .4· 

V vI v 2 Vj v 4 Vs 

B= 
b .6 .5 .9 .6 .8 -

We have 

1 1 1 1 1 

.6 .5 1 .6 1 
Rab = 

1 1 1 1 .8 

1 .5 1 .6 1 

"(Rab) T = (1 .5 .8 .5) 

0 0 .9 .6 .8 

.6 .5 0 .6 0 
Rj3b = 

.6 0 0- 0 .8 

0 .5 0 .6 0 



Rob = 

o 0 

o .5 

.6 0 

o .5 

.9 

o 

o 

o 

.6 

o 

o 

o 

.8 

o 

.8 

o 

It is easily seen that A (Rab) tli, R = b, thus 3.§!:.§!oR = b. 

Consider, for example, $l(Rob)E~(Rob)such that 

0 0 .9 .6 0 

0 .5 0 0 ·0 
$1 (gob) = 

.6 0 0 0 .8 

0 0 0 0 0 

We have 

Any fuzzy subset A, with grades of membership vector a 

such that 

(.9 .5 .8 0) E;aE;.( 1 .5 .8 .5) 

has the property that AoR = B. Now consider $2(gob)E~(Rob), 

such that 

0 0 .9 .6 .8 

0 .5 0 0 0 
$2 (gob) = 

.6 0 0 0 o· 

0 0 0 '0 0 

We have 



Again, any fuzzy subset A, with grades of membership 

vector a such that 

( • 9 • 5 .. 6 0) ,,~, (1 • 5 • 8 • 5) , 

has the property that AoR = B. Note, however, that 

(.9 .5 .6 O)~(.9 .5 .8 0) 

4.4 Remark 

A{Rab)T is the least upper bound (l.u.b.) of the 

solution vectors of the inverse problem. The set 

V T' { (~(Rob» /~(Rob)£~(Rob)} includes the lower bounds of the -- ,-- --
solution vectors. Generally, we may have the case, where 

as it has been seen in the last example. In the next section, 

a class of non-greatest lower bounds is identified, the 

solution of the inverse problem being thus improved. 

5. IMPROVEMENT OF THE SOLUTION 

5.1 Definitions 

Let a mxn matrix R = [r .. ] and a row vector b = (bl b 2 .•• b ). - 1) _. n 

In the sequel, the set {\I(~{Rob»T/~(Rob)£~(RO~)} will be 

denoted by V(~ {Rob»T. 

A vector V(~l(ROb»T£ \I (~(Ro~»T is said to be redundant 

if there exists V(cf>2 (Rob» T£ V (~(Rob» T such that 

Let §k' §t be the kth, tth column vectors of matrix S 

respectively. If 



Sit ~ O+Sik ~ 0 and Sik~S!~'~i 
(sit = O+sik is arbitrary) 

then ~k is said to be dominated by St. 

5.2 The improvement of the solution of the inverse problem 

Let a mxn matrix R = [rij ] and a row vector b = (bl b 2 ••• b n) 

and assume that 3 a:!!oR = b. Let S = Rob = [sijJ. If ~ is 

the matrix obtained from £ by deleting all its zero column 

vectors, it can be shown that 

(ll) 

Denoting by Sk the matrix obtained from ~ by deleting 

a column vector sk' it can also be shown that if and only if 

sk is dominated, then 

v ( <P (Sk) ) T C V ( <P (S» T (12) 

and 

Th~ significance of (12) and (13) is that, by deleting 

a dominated vector sk from ~, a (possibly empty) class of 

redundant vectors is excluded from the solutions which are 

obtained from 

Thus, if Z, Zl are the number of row vectors in 

\/(<p(S»T and \/(<P(Sk»T respectively, we have 

Z 
Zl =-

zk 

where zk is the number of nonzero elements in the column 

vector sk" 



If S* is the matrix obtained from £0 by deleting all its 

dominated column vectors, we further obtain from (12) and (13) 

that 

(14) 

and 

3 iP (§.*) e;$ (§.*) : V tiP (S» T~ V(iP (S*» T, ¥cp CS) e;$ (~) (15) 

Thus all the solutions of the inverse problem are given 

by 

It can be shown that any reduction of the dimensions of 

S* would result in some nonredundant ~ectors of V($(S»~ 

being eliminated. However, some redundant vectors may still 

be included in \/{$(S*»T. 

5.3 Exam:ele 

In the last example . (section 4) we had 

:.0 0 .9 .6 .8 

0 .5 0 0 0 
S = RcSb = 

.6 0 0 0 .8 

0 .5 0 0 0 

and !\(Rab) T = (1 .5 . 8 .5) • 

Thus 

0 0 .9 

S*= 0 .5 0 

£. 0 0 

0 .5 0 



""1"/ """'--

since the 4th and 5th column vectorso;f S are dominated 

by the 3rd column vector. We have 

V(g'?(£*»T ={(.9 .5 .6 0), (.9 0 .6 .S)} 

All,~'s, such that aoR = b are given by 

(.9 .5 .6 O)'~(l .5 .8 .5) 

or 

1.9 0 .6 .5) (~~ (1 .5 .8 .5) 

These are shown by the tree of Fig. 1. 

6. CONCLUSIONS 

In this paper, the inverse problem of fuzzy relational 

equations has been investigated. A different type of the 

conditions for the existence of a solution have been derived, and 

the problem is given an analytical solution. A method has been 

proposed l by means of which a class of redundant lower bounds 

of the solutions are readily eliminated; the general solution 

is thus improved. 
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ARRANGEMZNT OF FORMULAS AND MINIMIZATION IN Pi-LOGICS ( ALGEBRAS ). 

Summary. 

~ 

1 . V~clav Pinkava 
Severalls Hospital 

Colchester, Essex, U.K. 

It is shown that all canonic formulas in Pi-logics are generally 
minimizeable, this possibility depending again only on the defined or 

crucial properties of the connectives. With some further restrictions 

, imposed on the connectives other types of canonic formulas can be con­

structed as well, which are again minimizeable. 

Introduction. 
The paper presupposes knowledge of (1) and preferrably of (2),(3) . 

and (4). . 
It was shown in (1) and quoted in (2) and (3), that three incompletely 

defined connectives Of two arguments, i.e. 

, {D if Vi =0 
a) 'l.r.tf!1V2.. ~ vi. it Vi = 1 

{ 
0 iSf Vi = 0 

b) V1~1ll. = 1. af tI,' =1 otherwise undefined 

c) 'V: chti :: Vi j f Vi ::. 0 
1 . 

t"V 

plus the cyclic negation defined as: '1'-+ 4 (r--Il'd. f) -::: V' 
always form a functionally complete system in any finite multiple-valued 

logiC, as ~very function fCV'"1'V'2J' "J"n)tDcan always be expressed by the 

canonic type of formula: m~,1\ ..Lh.. J 
40 [C'~ er (t"!-~ ra,,6Jf) ~ 

- I 'J t: tlJ iflt::i f (CO",I"!..· 'r"''') t.o ~ 
, " LV-: The constants and the characteristic functions of the type: 0 

can be generated by the subset {~/,,,,,, J as shown in the papers quoted. O1Itcrw~ 
Thus the method enables convenient generating of new types of connectives 

which will always form a functionally complete system, provided their cru­

cial or defining properties have been preserved. 

Further work in this -topiC was concerned with additional properties of 

the connectives which would enable forming complete systems consisting of 

less than four connectives. 
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It was also shown that most, if not all. of the multiple-valued logics 

used in practice are actually instances of the Pi-logics or show an obvious 

and close relationship with them. 

However, the canonic formulas are clumsy and very l~thy.Thus, it was 

obvious that, should the Pi-logics have any practical applicability, the 

question of minimization of the canonic formulas would require some atten­

tion. It seemed that ~ owing to the incomplete definitions of the general 

types of connectives - the question of minimizeability would have to be 

considered separately in every instance. Rather surprisingly, the opposite . 
was found to apply. This is the stiiject of this paper. 

Whilst the basic facts have been repeated here, a deeper understanding 

ot the topic would require familiarization with the previous papers quoted. 

Minimization in Pi-logics ( algebras ). 

As shown elsewhere /(1),{2),(3),(4)/, ~he following holds for any 

Pi-algebra: 1\ h. WI..::cil n. 
tn ~( , .. -It en -\ 0 [C)'ffT(~r"/1Il)JJ-t = -\Q[ Cl' III ( ~r,t1))J-l , 

t (41.'.t/,,' .. HO f (ti4IDl. •.. tCiIl) Ft 
this owing to the fact that the functions of the type: ~(v) can assume 

. (l 
only the values 0,1 and for these values the connectives Ea and~ 
behave the sarn ,,~s apparent from their. respective definitions. 

Let us nOw lonsider a subformula of the type: 
fI 

i m 'Y"t (~t) ) A 
. Taking any two of the expressions of this type, it is clear that they cannot 

both assume the value ot 1 for the same substitution. It is, h~wever. possi­

ble to have such a substitution where both expressions of the given type 

assume the value of O. / It should be realized that, whilst defined for the 

pairs of values <00 /' • ~Ol;:> t LIO> , the general connective (0 I . is not 

defined for the pair of values ~l,l~ ./ 

Let us denote the above type of expressions with ~1 'fl . Further, let 

Q be any elementary for~ula / partial expression / such as may ,occur in a 

canonic formula of the type considered. Bearing in mind that Cf., f:t cannot 
assume both the value of 1 at thcsame timet it is easy to see that the 

following holds for the possible SUbstitutions: 

where both sides cf the equation aCCUW0 the value of 0 far th~ substituticn 

<:OO/' ar.d the '.:alue et for the rem.aining possible suosti tutions .( 10> aIld,(Ol.:? 

l 
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Let us further realize that: r.\ lJ..I. (It) ~..f. M lL t 

It 1s then possible to tormulate Theorem 1. 

Theorem l. 

In canonic expressions of the tyoe: 
'" ~{'l. .," 

rCvi , vl j ' .. JV'IL) :: (.) [ er m ( EE LYq (If,))].t 
~ ~:'1 "e-

as is obvious .. 

t (111,0.1../,··".)1:0 EH 0 
any. connectives of the type. " will behave in such a way so that 

EH will appear distributive with respect 

rily so in a general context /. '--4 
to (;) ,/ although not necessa-. ' 

Also, owing to the tact that 8tfiLlt)=1., the above type of formula will be 

generally miniroizcable. L~o 

The Proof preceded the Theorem. 

This gives a basic approach to minimizSition. Clearly, minimization algo­

rithms or strategies developed for canonic formulas in modular lcgics Eay be 

applied straight to canonic tormulas in any Pi-logic emp~ing the CB -type. 

This follows frem the fact that the modular operations:"su~mation and multi-

plication modulo k" are instances of 0 and EH 
properties ot individ~al instances of 0 , EH 
of minimization, as already shown. 

respectively and the other' 

do not intluence the process 

Let us now consider the type ot. tunc'tion: ~c. it} having the additional 

property of: 'Vi ~ '-1 ; Vi· . 
As shown elswhere (4) *) the set i~t~} forms a functionally complete system. 

Let us further introduce the type of function: 

As shown 

by first 

and then 

r. {f-1 iffV-:i 
Ti(V"):: Q ort.f.(W(Jt. 

again in (4). these functions can be generated out of the set 1. ~/""'~ 
generating the functions ~(1r) in the familiar way / see.(l),(2),(3); 

applying the formula;..,,,_., rvt-4 

tt{lf):: ~ [ {If'K(V-) J-l(L(V)] 

The constants· C)... are of course also generable via [t7J ~} • 

Let us further introduce any function of the t~pe () • The set {~~}allows 
two specific SI.l htypes of 0 to be generated, but this is irrelevant from the 
point of view of the proble~ now concidcred. 

-*)7h,: r·:.s;,ect:.vt: 'l'!:'Jcrc.:l has bd.n .:1udl~d to t}:e fi~::ll vf'!"ci;:n '~f (:;.). 
Eowever~ as. stated on pg 475 of the respective Proceedings the final ver­
Slon h~a net arrived in tiffie, whereupon the organizers kindly had the ori­
gin~l draft re-ty~ed and published. lauthor's note/. 
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Lemma 1-

For any f{l1f1lJ~· ··,Uil) t 0 the following holds: 
'" :l::.f.II. ~ 

f (""~l)" "") 1I"Q) : g [ er ~ C ft f"t C1>())J-l, 

.f (~114'l.r·fa.) fO 
Proof. ----- , 
The correctness of this Lemma is obvious .. I f a value vector .( t:l 1 • tlZJ • "'J t:t,l '7 

fit.::; the e"xpression'( .Gf'f/t'ththen it does not fit any o!her expression of 

this type. e =., Ap f 
Consequently, for that particular expression it is: tY.'TQt{f1()!:: -1 
owing to the properties 0 f (f . Then ('1ft- £ -1 -:. Ct and bearing in mind 

that all the remaining expressions [er ~ l ~falVi))] ~ .:; 0, the forI!1ula will be 

reduced to 0,00 ef 00(r .:: 0 .. Similarly tl~r all the other value vectors. 

Thus the above holds. Q.E~D. ., 

Let us now consider any two expressions of the type [Q fQe (t; IJ-\, both 

pertaining to an instance of the general type of !orJ::iula Le-I!1ma l. 

Let us sYI!1bolize them by f., f2. . Obviously, the expressions f'1' f2. cannot 

both assume the value k - i for the same substitution ete. as with Proof 

of Theorem l. 

It is then easy to see that the following holds for the possible pairs of 

value substituticns: < C.O»,! < k-4, 0>; <: o,G-.f>: 

'-of (Jj } (It) ::. k-1, (vftf't <0 c: {EfJJ QH( 

t::: 0 

Let us further realize that: 

'-oi .0 r Cv J,;: f.-1, ~o Jkf 4 hI) 
l;: 0 1 t 
It is then easy to see the correctness of the following Theorem 1 a. 

Theorem I a . 

In canonic expressions of the type: 
~~E." ,. 

{-,Cv"V,,"I"'): @ [er ~ ( ~ f~ (vt l)].{ 

Vi ®t-1:: 
;: £-4)J 

any pair 

that 1;7 

f l '-I J I'll J ., q 11) * 0 . 
of connectives of the type: (),~ will behave in such a way so 

will appear to be distributive with respect to () in that type 

of,~oroula, a 1 ;ough not necessarily so in general. Owing further to: 

.r;-. (\1)) -:: £- -1 J the above type of formula will be generally mi n 1.I:li7.enble. 8 11 
'~'.hE: Proof pr(;ccdvd th.- 'l'heorem. 

1 



- 5 -

Let us now consider the followins functions: 

sc.{£HJj'V8V=V 

e c t0jj 1Tetr=V 

Let us further introduce the following characteristic functions: 

lC. {X i ff 11 = i f CV; = 0 o~trWII,(' 

where: )( ~ it 2.) •. " J ~ -1 j i = 0, i,ll····)f~.f 

If any syste!!l of the type: fs, e} is completed by any system of the 

type {c$-, N J , then the above functions can be generated via the subset 

{ ~ I "'}. Constants and characteristic functions l(L' (V) may be of course 

generated by {~,"'J and: '}{ BrilV)::: ti)((V). 

We can now formulate 

Lel:1ma 2. 
For any multiple-valued fUnction f (1J i1 V,z) .... )lrn) t- 0 

the follov.ing holds; m-f £11 n )( 

. f (1I1'~') ···")"4) = 8 [ ~1 KCViJ J,{ 
A:: of l 

Proof. 
f (a"J 'v··/4,.) to 

Considering the basic canonic formula in Pi-logics / such as shown~e.g. here 

in 'Theorem 1,/ we realize that the expre,i,si~ra of the type [Cr@ttf.? rat (vlJ HA 
can be replaced by those of the type [ t::t (la (Vil) J, , as they will obviously l ;: <f T( i "\. 
behave the same way with respect to the value vectors. Thus, the above holds. 

Q.E.D. 
/ In this full canonic form. i.e. not yet considering minimization, the 

r 0 '-type need not be of the subclass (e'./ 

We may further observe that, with respect to the characteristic functions 

of the type: ft"or) / with the same ')(. /, the c.onnecti ves will behave in a wa 

isomorphic to the "&" and ItV" in binary logic. Clearly, as the functions 

rtCli) may assume only the values 'J.l, 0 , we have: 

El )( 0 e ')(. 0 
X )( 0 ')( )(. )( 

0 0 0 0 it 0 
" 
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S-, J3 /2./3 

)( 

Thus, if rendered by mean's of 6- t Sand tClll) , any multiple-valued 

function raay be viewed as consisting of l'l'.laximally fi.-1 "pseudobinary" 

functions, which can be each arranged like real binary functions and then 

oi~i=ized fGllowi~g the rules set above •• 

~e can thus for:ulate: 

Theore::l 2. 

A f6rmula given in the canonic foro: 
m~t:.1\ fl K 

[C1I' , v:) ","') : 0 [ B { (Vi)] P t~4 Gtt ~ 
"'\-..f .J.O • .f (41"V···j 1hI).t.. P 

can generally be minimized by decomposition into ~- 1 or less pseudobinary 

functions in which case tlie connectives e I 8 are mutually distributive, so 

that the respective subformulae may be conveniently arranged and then re-
)(. )( 

duced owing to the rules: fL (v) CS tj (v-) :; 0
1 

R--t )( e 0M " )<.. J It 
t::o x f,CV" 

('i CV) 8 X::: Tt ,. 
The Proof of the Theorem was given in the preceding demonstration. 

It should,be acknowledged that this approach using the fUnctions of the 

type f/\ V) and the idempotent subclasses of CV ,EB depends on a certain 

generalization of the ideas contained in a paper by Rabinovich and Ivas'kiv, 

dealing with the ternary case. (5). The generalization consists of an exten­

sion from k=3 to a general k and replacing the fully defined connectives by 

classes with just the necessary relevant properties. These, in their own turn 

form subclasses of still more ceneral classes of Pi- connectives. 
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The canonic formulas dealt with so far may be considered as generalized 

analogies of complete disjunctive normal forms in binary logic. 

Let us now consider a subclass of connectives such that: Et) C {CV J and 

vi~j=i. Let us further introduce the following type of characteristic 
function: "" " f 0 iJf IJ:: i 

{t(V) = 11 o.fKtrwil( 

/ Having any complete Pi-set, the fi Or) fuctions are of course generable out 

of {ffiJ~' ~} via the formula: £--1 S 'f1(v) /. 
It is therefore easy to see that the following Theorem 3 holds. 

Theorel:1 2-
For any multiple-valued logical function {(V1C llloJ "--J ITn) to, it holds that: 

) r" ~ _ .t.(1 l7t ': It-m. n. 

ftv .. v" .U) v~) = Q [er fB ( ffl wl1p1." ~ [ Cl< Ea ( ~ f~("() ) J~) ; 
t ~"'1Al) '"r 41\) f 0 { (Q.-il qtr") Crt) t { 

( ex.:= 0,2. J ~.".""" B. - ~ ) 
tt 

Proof. ill. t'V-f 

::~-:xpreSSion of the type ( Wf~ ('i) ),t'Gl(~ill assume the va~ue of CJ{ 
if substituted by its resnecti ve value vector <. Q1/tl) - ,- .. ) a." > or else the 

value of 1, owing to the additional property of the ffr -ty~)e, i. e.: vo:;1 ::;: 1-
1\ "'V • 

Thus, if t::e f1lJ expressions of the type: LEfj tq 1( titJ1.\) are for;r:.ed, 
t ~ i T(l 

using characteristi~functions pertaining to those value vectors for which 

the function does not assume the value of 1, it is clear that, if these va­

lues ~r~ fed into such a !ormula, the expression will assume the valu~ ef 

the respective constant eX. * -1 • 
-i 

( As ffifa,(tlf):: 0 when the correct values are substituted , it is I:Jt necessary 

to use an explicit constant 0 ). 

On the other hand, if values which do not fit any expression of the type 

[El?~(~JJA) are substituted into the formula, then clearly the whole 

formula will assume the value of 1. However, such substitutions are 8xactly 

those which have been loft out when constructine the formula , and th~Gtare 

those, for which the function f (Vi/V,)"" . ',-vn) -:::: 4.. The Theorem is proved. 

Owin~ to the additional pro rerty 0 f the: $ -subty 90, i. e. Vi EP 1 -::: 1.. , it 

is a1.so true t1.Dt: 1. $ 1 ~ 1. • Tt is th('n t"o.sy to ct":o tI:at, with r,'l:ard to 
"1 

the ch:.lro.ctorictic fJr~ctiur.:5 n- (1r) the cor.nectlvt:[) $- ,ftJ will behave 

as uutually distributive. 
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It is further obv~o~s that in the type of formula Theorem 3, two ex!:res­

sions of the ty.peLffifQ\I/e)].:t' cannot assume the value of 0 for the S.:l!nC 

substitution. Denoii~g ~ny two such expressions by: F., 1='2. we may see that 

the following equation holds for the substitutions .( 4;i 7; < 11 0/) <.,.0)">,: 
Cl. El? ( EdB F2.) :: (c:t (11 Et) EH C a. ~ Ft.) ) 

( Note: If the substitution <: 0 J 0> could occur, a general E8 -type could 

not be used in the above formula, since, generally, 'agJis not defined 

for Cl ~ CL • However J such SUbstitution cannot occur, as has been shown.) 
'--1 Ni 

Realizing further that E±3fi lV)::'O and a.Ef]O::. a we may formulate 
l=-t 

) en m :: f£. -111 n ('\,; i 

The;:": ~~noniC form of the type: ID [C)LEl3 ( ~ fa/Yi»)I~) 
f (Q11 a'r:-) al\):f ~ 

the following Theorem 4. 

any connectives of the defined types will tfehave in 

appear as distributive with respect to EB 
such a way that e wiil 

EBt.!'i ........ f 
• Owing further to . 1t (v) ~ 0 and Q EJj 0 = a. , 
be g 11 '" .\""11 . enera y m~n~~~zeac e. 

the above for~ula will 

The Proof preceded the Theorem. 

Let us further consider again the function: ~ C. { ~} ar..d lIi & £-1 -::: 
Let us introduce also the function (J) C. {G '1 and Vi ® Ft -1 -::, fi. - ~ J 

and the function: ('v ~-4 {O 'Jf ' , V-:::'I, 

'\tI.(V)::. 
\1. ~_.., oti.tf1Jilt. 

It is thus possible to formulate two Theorems: 

In a cano~ic. formula of the type: 
"... t: r 'If' 1'1 

~ 1\1'. N f .. 4 J 
~"Y: [ C){ ® ( ~ 'fapelJ ;.J 

u· t. 

i ((I i' ~ l) -,~.) ~ " • ~ L'\.... 
any c:'.mnLctivt;;<,i ha\l.i.J.I~ the general properties defining @ _, V will behave 

in such a way so that ~ will appear as distributive with respect to~ 



tt-4 - 9 - 5"". 1"1/2/6 
A rvk-~ 

Owing further to V \V. Or) = 0 
t:o H 

.and a..&>0::. a, this type of forruula will 

be generally minil.llizeable .. 

Proofs of the Theorems 4a, 4b parallel exactly those of the Theorems 3. 4 
and may be easily made explicit by substituting in the precedting Proofs 

.in the following way: 

€B~ @, 63 ~ (;}) 1.f7 i-tf) 

rt~/n 
It may be observed that the formulas employing (j}), I?T ~ to a subclass 

ot which the Post algebras are an instance. 
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INTRODUCTION 

The subject of this article is an extension of the Pi-logic 

algebras to enumerably infinite case. 

As shown elsewhere [lJ I [2] I [3] I [4] , the Pi-logic 

algebras represent a class of functionally complete systems of 

many valued algebras of logic I of which most of the currently used 

systems are instances. The unifying or common properties of the 

Pi-algebras can be envisaged in the form of incompletely defined 

functions which I nonetheless I form functionally complete systems. 

These incompletely defined functions can be then completed in 

various ways I thus generating the known logic systems like that 

Post I Rosser & Turquette I Zhegalkin I Aisenberg and Rabinovich etc. 

On the other hand they can be completed in such ways as to generate 

entirely new functionally complete systems of logic. This may have 

some importance in various applications in computing and elsewhere 

[4] I [5] . The systems dealt with were finite. However I some 

studies dealing with the sematics of stochastic and fuzzy automata 

[6] I [7J , [8] I which stipulate the usage of infinite valued 

logics I have motivated this extension of the Pi systems to the 

enumerably infinite case. This article presupposes the knowledge 

(1] I [2] I or at least the appendix of ~J. 

.~.\.. 



THE INFINITE VALUED PI-ALGEBRAS 

Let us consider two incompletely defined and one completely 

defined two argument functions with arguments running through 

the set of non negative integers 0 I 1 , 2 I •••••• It is not 

necessary to stress that an enumerably infinite set can always be 

mapped into the above set of integers and thus the choice of values 

set can be made without losing generality. 

a) v. itv. =0 
= 1 J f otherwise undefined 

b) if v. = 0 
1 

== v. if v. = 1 
J 1 { 

otherwise undefined 

{ 1 iff vI = v2 
0 otherwise 

c) 

Let us further introduce an enumerably infinite set of constants. 

The following one argument function 

v == v + 1 (where "+" has the meaning of 
ordinary arithmetic addition) 

We shall write 'Vx I thus denoting x super-positions of -
_x I . . 11 _0 h so that v == v + x. t IS especla y v = v. T en it is possible to 

formulate the following two lemmata: 



LEMMA 1 

C9f!. tJe= {O, 1,2, ..•• } 

Proof 

First (v 1# v 2) o for any VI =1= v 2' thus as v t vX, for 

whatever the substitution a for v, it is always VX = a + x I where 

x is a deliberately chosen interger x:> 0 , and thus a +- a + x, 

......,x 
so that (v ~> V ) =. 0 . 

Then 

so that Q.E.D. 

Corollary 

The formula given in Lemma 1 renders any constant including 

c "" 0 o 

Cae. #0 

,....,X 
I i. e. C ;:::: (v # v ); for generating constants 

o 
~ae-1. 

it is also possible to use the formula CJe = (v # V) 

obviously v#v = 1 for any substitution of v and 1 +1Je- 1 "" fit:. 

for any Ide+O. (tae an integer) • 

Let us now introduce the following type of characteristic function: 

= 
{

I iff v = i 
o otherwise 



LEMMA 2 

The correctness of Lemma 2 is obvious. The expression 

(c. 4=) 
1 

v) 1 iff v :;;; i and 0 otherwise J which is the definition 
~l 

In it's own turn of 't'i (v) • 

Lemma LQ.E.D. 

C. 
1 

-x 
(v# v ) as shown in 

THEOREM 1 

Any function of an enumerably infinite valued logic f (vII V 21 ••• v n) =F 0 

can always be expressed by the following type of formula: 

'Yn~~o..----r 1;="(1 ~ag 
= O{Cv #vX) of D[(Ve #~x) #~J J} 

7\.'=1 1,=1. A 

fraj ,a.2 ,.··d.1l) #0 

Proof 

Allowing for the possibility that the above formula may theoretically 

-<"-'Il. 
consist of an infinite number of elements of the type [Ct 0 (0 rat (V e) J

1 .(""1 . 
we can easily see the correctness of the theorem. In analogy with the 

finite binary case it is easy to see that any logical function can be viewed 



as an (ordered) set of n + 1 tuples (or vectors with n + 1 dimensions): 

of the type (aI' a z ' a 3 , ••.. a n ; Q),,1 where a
i 

(i = I, 2, ..• n) are 

respective substitutions of the variables, v I' v 2' ••. v n . and b is the 

value the function assumes for that particular substitution. 

Let us first consider that out of i(" possible vectors of the 
o 

type (a I' a
2 

I ••• a,,{ only one b :f: 0 , so that we would have a 

function assuming a value b f 0 just for one substitution and 0 

for the rest. If we now formed a formul a of the type: 

[ra1 (Vi) 0 1'"a2(V2) £:J , •• - 0 ra..,./V'l'l}QCl'l Cc lA = b~) 
where each "\If (v) is a characteristic function so that 

·Q"1.i 

Ya, (v) 
1 

= {
I iff v = ai 
o otherwise 

this would essentially 

express the function as obvious from the definition of fi (v). and "1 0 V2 . 

Let us now consider several functions of this type <fil CpZ' •• ~Ym 

where m is first a finite number. Obviously if 91' ~, .... I f> m 

were linked together with the functor 0 I i. e. SCl 0 f' 2 0 ... Orm 

they will express a function assuming respective values bA) •.•.• b Am 

just for the respective substitutions 

i = I, 2 I ••• m I and 0 otherwise. 

(all a2 I ••• a > 
n ,A­

L 

As long as the number of substitutions for which there are function 

values I bA.:f 0 is finite I there is no difficulty in envisaging the 

construction of the respective formula. If the number of values bJ,:f 0 be 

infinite I the above type of formula could still be envisaged in the form of 

an infinite string of symbols. Thus any functor of an enumerably infinite 
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valued logic f(v , v I ••• v ) + 0 
1 2 n 

can be expressed by the 

above type of formula. Q.E.D. 

THEOREM 2 

Any set of functions of the type {o l 0, ~ ~ rv} 

is functionally complete in any enumerably infinite calculus of 

logic. 

Proof 

The correctness of this theorem is obvious as the types of 

connectives listed are the only ones entering in the formula 

Theorem 1. 

Corollary 

If the functor 0 is completed in such a way so that the 

vOl = v+l v CV 1, then a set of the type { 0 ') 0, #} 

is also complete. It may be noted that ordinary addition is an 0-

type of functor. An instance of the 0- type of functor is 

ordinary arithmetic multiplication. 
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Introduction 

The Implementation and Evaluation of a Fuz3Y 

Control Algorithm for a Sinter Plant 

by 

D.A. Rutherford, 

Control Systerrs Centre 
UMIST 
Sackville Street, 
t-t..A.l<lCHESTER H60 lQD 

The reported application (11 of fuzzy logic to the control of a 

dynamic system has led to a study of the applicability of the technique to 

the design of a controller for a process where the characteristics are ill 

defined. It was, applied to the control of the raw mix permeability in an 

iron ore sinter plant by controlling the rate of water addition. The 

moisture-permeability relationship is highly non linear and very variable. 
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The Con trol Al[;ori thm 

The control algorithm consists of a group of rules that express 

the dependence of,one variable upon another. The rules are expressed in 

terms of the fuzzy sets AIB,C and D (such as small or large) that describe the 

variables X· Y and Z. The rules have the form:-

If X is A and Y is B or C then Z is D . •• 1 

where Z and Y are the inputs and Z the output of 

the algorithm. 

From the theory of fuzzy logic [2J it is possible to ShOH that: 

the fuzzy set describing 2 is given by:-

, 

• •• 2 

where U, V and Ware the universes of discourse for the variables X, Y and Z. 

For a particular value of w equation 2 can be re-arranged into 

a simpler form:-

3 



Where a 'v b ::; max (a,b) 

a, b ::; min (a,b) 

Definition matrices, similar to the one shown in Table I are used 

to define the possible fuzzy sets A,B,C etc. over the appropriate inverses 

of dis course 

A --------..,~I 

Support Small Medium Large 

t 
1 1 .7 .0 

1 2 .7 1 .3 
X , 

3 .3 .7 .7 I 

I 

~ 4 0 .3 1 

Table I Definition Matrix for Fuzzy Set A on Variable X 

The fuzzy sets describing each input variable X or Y have zero 

membership value for all but the mth support in X and the n th support 

in Y. This leads to further simplification of equation 3 since)for example) 

evaluation of the term 

max 
II ::; U 

reduces to the selection of an element in the column 'A'that is 

identified by the mth row in the definition matrix. Using matrix notation 

equation 3 becomes 



"z(W) : Min ["(W,D), U(m,A), Max[V(n,B),V(n,c)]] • •• 4 

where U, V and W refer to the definition matrices for the fuzzy sets. 

If there are J rules then they are combined using the linguistic connectiye 

'else', ie 

J.I...,( w) = 
L. 

Max 
j=l,J 

Given a range of values for n and 1.1, i.e. a range of inpt:ts J 

5 

and values (column nurT1bers) for A B C and D equations 4 and 5 give the TT1err,-

bership value for each support w in the fuzzy set describing the output 

variable Z. 

Numerical values for the coluTT1n numbers are obtained from dU in~er-

preter program that operates directly on each rule expressed as a test string. 

The rules are entered one at a time and the text string searched to identify 

the mnemonics used to represent the various fuzzy sets. Numerical values to 

identify the fuzzy sets appropriate to each rule are obtained and used to 

evaluate equations 4 and 5 for each input condition. The resulting fuzzy output 

set is converted to a crisp value by taking the support that gives the 

maximum membership value in the set. 

This procedure has been adopted to generate a look up table employed 

to implement a control algorithm expressed as rules of the form shown above. 

This once and for all interpretation of the rules obviates the need for a 

resident rule interpreter in the control scheme and gives a very simple control 

system,although on-line modification of the rules becomes difficult. 



Ap,Plici.l:t:ion to the Control of a Sinter Plant 

An evaluation of the technique was undertaken on the raw mix 

permeability control scheme for a BSC sinter plant. Figure I shows, in bloCK 

diagram form~the water addition control scheme used to optimise permeability. 

The permeability error and sum of errors were used as inputs to the 

control algorithm. The rules defining the algorithm were written to embody 

experience of plant behaviour and to follow what: was considered a reasonable 

action to take in a r;iven set of cir'cumstances. Examination of the initial 

look-up table showed some inconsistences Hhich were resolved Ly adding rules and 

making slight changesto existing rules. 

The controller was tuned by adjusting the scale factors associated 

with the supports of the fuzzy system variables. This was done on a simulation 

of the process based on the best information available. 

Performance was satisfactory when process dynamic characteristics 

and the simulated non-linear moisture-permeability relationship were changed. 

Time constant changes were in the range 2:1 and gains in the range 4:1. The 

standard deviation of the error due to the simulated permeability [Jeasurement 

noise was slightly less than that obtained when a conventional two-term con­

troller was used. 

Plant Trials 

The satisfactory simulation results lead to an on-plant trial at 

the BSC Cleveland Sinter Plant. 
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After start-up no further tuning of the control algorithm was required. 

When transients had settled it was found that the permeability standard 

deviation was less that that obtained under manual control. 

It was also noted that control valve movements were less violent when 

the fuzzy logic controller was in use than when a oonventional controller was 

completing the loop. 

Further Hork 

The satisfactory performance of a simple fuzzy logic controller 

imp'lemented as a look up tabLe encourages further work. It is hoped to appl:,r 

the method to the design of controllers for plants having non-linear dynamic 

characteristics and having non-linear performance criteria that are expressed 

as a set of heuristic relationships. 
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Current models of semantic memory have been classified into set-theoretic 

and network moiels (Rips, Shoben, & Smith, 1973). The set-theoretic 

models (e.g., Meye~, 1970; Schaeffer, & Wallace, 1970; Smith, Shoben, & 

Rips, 197Lta) proposethat the meanings of words are represented by sets 

of semantic elements or features. Network models(e.g., Collins, & 

Quil1ian, 1969; Rumelhart, Lindsay, & Norman, 1972), on the other hand, 

represent word meaning by interconnecting nodes with labe1ed relations 

in a network system. Ho11an(1975) has argued that the Smith et al.(1974a) 

model is isomorphic with a network model translation and that the distinction 

between semantic memory models is vacuous. The present paper intends to 

show that the Smith et al. model can be reinterpreted in terms of a fuzzy 

set-theoretic (FST) model, which is a more fundamental model, and that 

the true distinction in semantic memory models is between network models 

with differing structural assumptions. 

In Zadeh's (1965) formulation of the theory of fuzzy sets, each element 

(x) of a set(A) is characterised by a member..sh (characteristic) function 

fx:A-(C,l) which associates with each element in A a real nu~ber in the 

unit interval (0,1), with the value of fx at x representing the "grade 

of membership" of x in A. Srr.ith et al.(1974b) have only introduced the 

theory of fuzzy sets as a means of describing the degrees of truth of 

propositions, an approach which is consistent with the semantic relatedness 

effects in sentence verification. Goguen(l967) has generalised Zadeh's 

system by replacing (0,1) by some more cenera1 mathematical structure, 

such as a completely distributive lattice or a seroiring. As an extension 

of this generalisation, Goguen(1974) was able to show that concepts are 

represented by fuzzy sets by proving that the category of concepts satisfies 

the axio~s and theorems of fuzzy sets. A FST model of semantic memory 

represents the meaning of a word as a set of semantic elements in which 
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each ele~e~t is graded as to its importance in the definition of the word. 

~he FST model is equivalent to the Smith et al.(1974a) feature model in 

that the defining and characteristic features of a concept as specified 

in the feature model are the elements of the fuzzy sets. Also, the salience 

of a given feature to the definition of a concept is characterised by its 

membership function. The somewhat arbitrary partition of features into 

defining and characteristic can be represented as a threshold membership 

function; above a cer~ain membership function value the elements are classed 

as defining features, and below it as characteristic features.Hence,all 

the structural assumptlons of the Smith et al. model are satisfied, and 

the FST model provides a descriptive interpretation. 

As Hollan(1975) proposed any set-theoretic model can be map?ed onto 

a network model by the procedure that he describes; the FST model is no 

exception. The elements of the fuzzy set associated with a concept would 

be transformed into nodes connected to a common concept ncde. The membership 

functions would be assigned to the edges of the digraph, indicating the 

importance of the two nodes to each others definitions. Goguen(1974) 

proposed a si~ilar model in terms of hierarchies of fuzzy sets,i.e., 

fuzzy sets of fuzzy sets of •••• fuzzy sets, for all fin.ite levels. As 

the transformed FST model is isomorphic to the Smith et al. model then 

the procesciing assu~ptions of the feature model should not only be capable 

Of satisfaction within the FST model, but also within its network counterpart. 

The two stage ~odel posited by Smith et al. could be realised as a mapping 

process in the network system(Sim~ons, 1973) in which the first stage 

is a mapning of the total concept network (1. e., defining cmd characteristic 

features) between subject and predicate nodes. The second stage would 

consist of the mapping of the subset of the subject concept network where 

the subset is defined in terms of the ele:nents having a minimum membership 

function (i.e., only defining features). It is obvious that the FST model 
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is a more fundamental description of a set theoretic approach as it does 

not entail any partition of features into defining or characteristic; a 

partition yet to be explained by Smith et al. 

According to Rips et al.(1975) it is in terms of processing assumptions 

that the set-theoretic and network models separate, particularly the 

processes involved in statement verification of the form An S is a P 

(e.g., An apple is a fruit). The set-theoretic processes assume that the 

verification time is dependent upon the similarity of the subject-predicate 

pair by the comparison of semantic elements, while network models assume 

the verification time to be associated with the retrieval of pathways 

between the subject and predicate concept nodes. As the FST model makes 

the Same assumptions as the feature model for both structure and process, 

and as the FST model also has an isomorphic network representation, then 
to 

it should be possible to apply the Same processes~a network representation 

of the FST model. If the FST model is isomorphically mapped onto a network 

representation then the processes required for statement verification would 

necessitate the following matching processes: 

(a) A match between the subject and predicate networks, the extent of the 

networks being defined by some arbitrary minimal index or membership value 

for the links or edges. 

(b) A short-range match over the same networks; this time the extent of 

the networks is defined by an arbitrary threshold membership value which 

partitions the network into defining and characteristic sub-networks. 

Both of these matching processes can be simulated by a search through the 

predicate and subject networks starting at the subject and predicate concept 

nodes. The searches from each of the nodes would be breadth-first and the 

weight given to any intersections which are found is a function of the 

membership values attached to the links which meet at the node. This type 

of search is very similar to the search processes posited by the original 



!ieblOrk mocels of Quillian (Collins and Quillian, 1969) 1972). 

In summary, by considering the Smith et al. set-theoretic model as a 

specific form of the general FST model, it is possible to directly transla­

te the feature model into a network model with identical structural assump­

tions and similar processing assumptio~s. A proliferation of semantic 

memory models could be produced by merely starting from different termino­

logical viewpoints. However, it is safe to say that the majority of these 

models would merely be different forms of the general FST model embedded 

in different terminology. 
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Possible applications of the theory of Fuzzy Sets to the study 

of semantic memory. 

1) What is semantic memory? 

Semantic memory is that part of long term memory which is involved in 

the comprehension of language, or to quote Tulving, 

"Semantic memory is the memory necessary for the use of language. 
It is a mental thesaurus, organised knowledge a person possesses 
abowt words and other verbal symbols, their m~aning and referents, 
about relations among them, and about rules, formulas, and algor­
ithms for the manipulation of these symbols, concepts, and relat-
ions. n 

Endel Tulving (1972, p.386) 

In the study of semantic memory we are concerned with the representation 

of knowledge within the human memory. This field is in many respects almost 

identical to the study of knowledge rapresentation ~ A.I.; the study of 

semantic memory provides the psychological validity for theA.I. models 

of knowledge representation. 

The various models of semantic memory which have been developed can 

be divided into two classes; network models and set-theoretic models. This 

division, however, is somewhat artificial in that the set-theoretic models 

can be transformed without loss of specificity, into network models which 

have the same structural and processing assumptions, and vice versa , the 

network models can be transformed into set-theoretic models. In fact, the 

two classes of model can be shown to be specific types of a general class 

of Fuzzy set-theoretic (FST) semantic memory mOdels (paper(A». 

The main structural assumptions for the class of FST models are the 

following, 

(a) Concepts (which are indistinguishable from concept meanings) are 

represented by sets of propositions of the form R(A,B) where A and Bare 

concepts and R is the relation which holds between the concepts. Thus t the 

concept A can be represented as [Rl(A,B1), R2 (A,B2), ••••••• ,Rn(A,Bn)). 

(b) The sets of propositions are ordered according to their importance 

for the meaning of the concept. Thus, if the concept A is represented as 



above then associated with each proposition R(A,B) there is a membership 

value bA,B which is a measure of how important the proposition R(A,B) is 

for the concept A. 

(c) Each and every concept is represented in this way so that the concepts 

which are elements of a concept's set of propositions are themselves sets 

of propositions with other concepts as elements. 

(d) The relations between concepts are themselves concepts and consist of 

sets of propositions, and thus R could be represented in the same way as A. 

(e) The relations can be inversed, but the membership values are anti-symm-

As each and every concept is represented in this way then the 'universe of 

concepts' must consist of a 'universe of fuzzy sets' (Goguen, 1974). 

2) Sources of Fuzziness. 

Our semantic memory is built up over our lives and it is built up out 

of experience. Our experience, however, is continuous; experience does not 

arrive in little discrete packets, but flows, leading us imperceptibly 

from one state to another. Thus, our semantic memory is based on a conti-

nuity, and memory for what has been perceived incorporates some of this 
long 

continUity. It has~been acknowledged by philosophers and more recently 

by psychologi~ts and linguists that words do not have distinct, sharply 

delineated meanings. Wittgenstein in the Investigations expounds at length 

on this problem with respect to the single word 'game'. More recently, the 

linguist Labov(1973) has demonstrated the fuzziness of the word 'cup'. 

We encounter many ordinary objects that are clearly and easily named, but 

many more where it is difficult to say exactly what they are if we confront 

them directly. A moment's thought about a paradigmatic example of reference 

reveals that the range of applicability of a word is fuzzy. While there ie 

universal aereement as to what is a prototypical red, it is obvious that its 
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limits are indeterminate. One could put the question : How much can one 

change an object before it ceases to be the object it was? Presumably, only 

when it ceases to be what it was do we finally cease to call it what we did. 

The above argument highlights the fact that with logic and language we 

are dealing with discrete symbol systems which map onto some type of con­

tinuum of concepts. Thus, communication requires us to convey what is 

usually some kind of continuum by using discrete symbols. Words map onto 

concepts but the concepts they map onto are not identical; consequently 

the process of mapping words onto concepts needs to be sufficiently 

flexible to enable the most varied members to be referenced by their proto­

typical words. If there is any sense in maintaining that words have fixed 

meanings it can only be that independent of context they relate to their 

prato-typical non-linguistic counterparts. Thus, in se~antic memory, two 

networks are required; a lexical network which stores the names of concepts 

and which is organised along lines of phonemic and orthographic similarity, 

and a semantic network which is far more complex and incorporates various 

continuum. The lexical network maps onto the semantic network by means of 

the name relation,N. In accordance with the argument outlined above, the 

name relation is a fuzzy relation of the form f:N(WxC)-+V where W is the 

set of all words, C is the universe of concepts, and V is some algebraic 

structure. 

One of the problems alluded to in the above argument was the continuity 

aspect of semantic memory and one aspect of this continuity is the memory 

for real-world variables. Variability information must be an ~ntegral 

component of the memory for concepts and a necessary compoenent of memory 

models. In fact, any model of working memory which fails to deal explicitly 

with such a salient characteristic of a real-world concept as its dimen­

sional variability is fundamentally inadequate. In traditional models of 

semantic memory it was assumed that physical property information is stored 

in discrete attribute value form, but this has been shown not to be the 

case (Walker, 1975). To overcome this difficulty it seems reasonable to 
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propose a more elaborate memory model which incorporates subjective distri­

butions of physical variability. These distributions need not be stored in 

semantic memory but could be generated when needed by examination of 

exemplars. The exemplars could be extracted from the continuous experience 

stored in the other areas of memory and brought into semantic memory as 

a fuzzy set of exemplars with the name of the prototypical object mapping 

onto this set. It remains to be established how much of the information in 

memory is stored in explicit form and how much is computed by little under­

stood processes of fuzzy inference(Zadeh, 1972; Carbonell & Collins, 1973). 

3) Fuzzy sets and the realisation of membership values. 

The membership values attached to each link in the network models have 

been called criterialities or importance tags(Quillian, 1969; Carbonell & 

Collins, 1973). The psychological realisation of these values has been 

treated in slightly different ways. In Quillian~ original theory the 

membership values were defined as criterialities, which are numbers indi­

cating how essential each link is to the meaning of the concept. In 

Collons and Quillian(1969, 1972) links were assumed to have differential 

accessibility (i.e., strength or travel time). The accessibility of a 

proposition depends on how often a person thinks atout or uses the propo­

sition in connection with the concept. Whether criteriality and acce?sibil­

ity are treated as the same or different is a complex issue, but network 

models allow them to be treated either way. It is difficult to know 

whether these two terms are merely describing the same phenomena in diff­

erent ways, or whether membership value is some function of accessibility 

and criteriality. This is essentially a psychological problem. 

There is the interesting problem, untouched by Collins and Quillian, 

of how to model the criterialities or accessibilities. In Carbonell and 

Collins(1973) the importance tags were modelled by the integers from 0 to 

6. The lower the tag, the more important the peice of information is. The 
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tags add up as you go dovm through lower embedded levels. Thus, the 

criterialities are r.:odelled by the monoid [0,1,2,3,4,5,6J with the binary 

operation +. Also, ly using the property that the value 6 is some sort of 

default value, such as 'IF 6 THEN SUPPRESS PRINTING', then the monoid 

can be said to have an infinity element; a + 6=6. 

In many cases the above model would be unsatisfactory, and a better 

model would be a multiplicative monoid such as (J,x,l) where J is the unit 

interval [0,1]. This structure would be particularly suitable for the FST 

semantic memory model as the number propositions which comprise a concept 

is usually extremely large and would, therefore, require a continuous 

interval. 

4) Context Dependency_ 

As stated above, it has for a long time been known that the meanincs 

or referents of words are context dependent, and further the structure 

required to relate the concepts utilised in understanding language is 

context-~ependent. Different contexts may necessitate different and in 

some cases even incompatible structures which cannot coexist. From this 

it would follow that our knowledge is not structured in a static manner 

but is reorganised during cognitive processing. Weinreich (1966) has 

argued that the sense of a word changes from sentence to sentence. Consider 

Weinreichts example of the verb 'to eat' in the phrasesteat steak','eat soup', 

teat an apple'. ~ating an apple requires no utensil. Soup is sipped with 

a spoon. Eating a steak requires a knife and fork. In each case the 

actions of the lips, teeth and tongue are different. The general point is 

that a word could have different meanings in a very large number of 

sentences in which it might appear, even when there is some core meaning 

as inteat'. 

To model these sorts of dynamiC processes we require a fleXible, 

dynamic conceptual system in which the structures of the concepts are 



altered from context to context. In the FST model this requires a process 

which can remap the concept set onto the unit interval, J. Thus, tte fuzzy 

set of propositions which represents a concept would vary with context, and 

over contexts (hence, over time) the concept A would be represented as 

fCl:CA~J, fC2:CA~J,······, fCn!CA-TJ, where CA is the subset of the 

'universe of concepts'which holds all the propositions which forms the 

concept A, J is the unit interval, and f is the fuzzy set with the subsc­

ipt C(l-+n) which denotes the context. This model is similar to the time 

dependent fuzzy sets proposed by Lientz(1972). 

Within semantic network systems, the context model described above can 

be realised as a plastic memorial network in which the following properties 

hold; 

(a) The accessibility indicies which are attached to each link in the 

network, are a function of relevant experience. 

(b) The model assumes continuous development of the accessibilites from 

the time of the first encoding. 

(c) Besides the relatively perm~nent i~provement, the model also assumes 

a temporary improvement in the accessibilitics as a function of recent 

experience(context). This temporary improvement is achieved by means of 

the spreading activation model. In this mOdel, when a concept is processed 

(or stimulated), activation spreads out along the paths of the network in 

a uecre&sing gradient. The decrease is inversely prcportional to the acc­

essibilities of the links in the path. Thus, the activation is like a 

signal from a source that is attenuated as it travels outward. The nodes 

and links which activated are temporarily more accessible, and thus, the 

structure of non-activated concepts can be adjusted by the spreading effects 

of activated concepts. 

This type of model is still along way from being complete, but it is a step 

towards a context-dependent knowledge representation which has all the 

dynamic properties of human knowledJ€ systems. The use of context-dep­

endent fuzzy syste~s will be imperative in simulatinc the dynamic aspects 

of human knowledge. 



One other concept which is potentially quite useful for the mOdelling 

of concepts or word ';,esnings is the concept of the 'entropy' of a fuzzy 

set. De~uca and Termini defined the entropy of a fuzzy set as, 

() N< « 'I) d f =K ~ S f x, I 

'I n n= 
where S is the function S(x)=l -xlnx - (l-x)ln(l-x), K is a eonstant,and 

f(xh) is the membership value for the element xh • DeLuea and Termini(1972) 

show that def) is a measure on a psuedo-metric space with respect to the 

distance function S (f, g) :: I d( f) - d(g) I. When applied to the modelling' 

of concepts the entropy of a concept would be a measure of how fuzzy the 

concept is. The fuzziness of a concept might well relate or be a function 

of the abstractness of the concept. Further, the entropy of a concept 

would vary from context to context, and so, t~e variance of the entropy 

measure over different contexts would give a measure of the flexibility 

of the concept. Thus, the concept of entropy would be very useful in 

modelling certain quantitative aspects of concepts. Such a measure could 

be easily incorporated into a semantic ~emory model. 

Conclusions. 
With language being a discrete symbol system and with 

experience being continuous in nature, it is not surprising that fuzziness 

runs through the whole of our language. Thus, in modelling the memory 

involved in the use of language it is also not surprising that any theory 

which deals with fuzziness is extremely useful. .As the theory of fuzzy 

sets is developed, each new theoretical notion must be considered with 

respect to its possible applications for the modelling of semantic memory, 

and language in general. 

Jon X. Slack 
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SUBJECTIVE EVALUATION OF FUZZY OBJECTS 

T T T 
Michio SUGENO, Yahachiro TSUKAMOTO, Toshiro TERANO 

SUMMARY 

This paper discusses fuzzy measures and fuzzy integrals PFesented 

by one of the authors and deals with two applications of fuzzy integrals. 

Fuzzy measures are monotone set functions which are not necessa-

rily additive. Those are defined as subjective scales for fuzziness. 

Fuzzy integrals are the functionals with monotonicity defined by using 

fuzzy measures. Those correspond to probability expectations and are 

discussed in comparison with Lebesgue integrals. 

Application problems are concerned with subjective evaluation of 

fuzzy objects. One of them is the evaluation of female faces and the 

other is that of the residences. In those problems, a fuzzy integral 

model is proposed to express a man's subjective evaluation process. The 

model is experimentally tested. 

1. INTRODUCTION 

In recent years, artificial intelligence, behavioural science, 

and human engineering, etc. which originated in cybernetics have found 

many applications in all fields of engineering. Together with this 

tendency, a variety of problems on human subjectivity which was studied 

first mainly in psychology have become problems in engineering. Here, 

a fundamental doubt is directed toward the fact that engineering has 

been inquiring objectivity by eliminating subjectivity. 

T Department of Control Engineering, Tokyo Institute of Technology, 

Oh-okayama, Meguro-ku, Tokyo 152, Japan 
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Concerning subjectivity among the characteristics of men which 

are superior to those of machines, L. A. Zadeh presented in 1965 the 

concept of fuzzy sets [1] I which has given a powerful means to deal 

with subjectivity by methods of mathematics as well as engineering. 

Since his proposal, fuzzy sets theory has been widely applied in the 

of automata, linguistics, algorithm, pattern recognition, decision­

making, and so on. 

The concept of "fuzziness" corresponding to ra"ldomness in proba­

bility theory is introduced in the fuzzy sets theory. Here, fuzziness 

is defined as a kind of uncertainty which is caused by subjectivity 

and belongs to the side of subject. On the other hand, randomness can 

be considered as one caused by random phenomena, i.e., objective and 

physical phenomena. 

One of the authors has presented the concept of fuzzy measures and 

fuzzy integrals (2, 3, 4J which are expected to have many applications 

in engineering. Fuzzy measures are defined as subjective scales for 

fuzziness. Fuzzy integrals are the functionals with monotonicity defined 

by using fuzzy measures. Those correspond to probability expectations 

and are discussed in comparison with Lebesgue integrals. 

Algebraic methods have been mainly used to approach fuzziness so 

far, while analytical methods have been seldom explored. Fuzzy measures 

and fuzzy integrals belong to analytical methods which make it possible 

to deal with fuzziness qualitatively and quantitatively. 

Fuzzy measures are set functions with monotonicity which have not 

necessarily additivity, while the set functions which have been investi­

gated in mathematics are mostly endowed with additivity such as Lebesgue 
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measures. With this point of view, the feature of this paper will be 

seen where monotone set functions are studied and their applications 

to subjective evaluation problems are discussed. 

In the applications a model of subjective evaluation on fuzzy objects 

is developed by using fuzzy integrals. The ability of the model is experi­

mentally tested in two examples; one is the evaluation of female faces 

and the other is that of residences. 

2. FUZZY MEASURES 

The measures discussed so far in the theory of Lebesgue integrals 

or in probability theory are the set functions with additivity. Here, 

extending the concept of the measures, "measures" as monotone set func­

tions which are not necessarily additive are considered. The concept of 

"measures" discussed in this section can be summarized in three state­

ments concerned with grade of fuzziness. 

Now, let X be an arbitrary set and ~ an empty set. Let x denote 

an element of X and let A, E, etc. denote subsets of X. 

First, suppose that a person picks up an element x out of X, but 

does not know which one he has picked up. Next, suppose that he guesses 

if x belongs to a given subset A. It is uncertain and fuzzy for him 

whether x ~ A or not. His guess would become subjective when there are 

few clues for guessing. Assume in general that a human being has a sub­

jective quantity called the grade of fuzziness measuring fuzziness such 

as stated above. Then the statements are described as follows: 

(1) Grade of x E CP = 0 and grade of x Eo X = 1. 

(2) If ACE, then grade of x E-A .:::.. grade of xE B. 
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The third statement concerned with continuity will be seen in the defi-

nition of fuzzy measures. 

By the term, "the grade of fuzziness ll
, the quantity which depends 

heavily on human subjectivity is implied. Wnen a man says that an object 

is uncertain, two kinds of uncertainties can be considered. One is uncer-

"tainty due to the lack of information and knowledge. This uncertainty is 

an objective one which is characterized by the nature of objects and the 

circumstance surrounding them. For instance, the probability of the 

result of throwing a die is independent of a subjectivity and dependent 

only on the nature of the die and its circumstance. The other is the sub-

jective uncertainty due to human subjectivity: the niceness of a woman's 

face is affected by a man's subjectivity besides her looks. The objective 

uncertainty is called randomness and the SUbjective one fuzziness. 

The grade of x E:: A is merely an abstract example of the grade of 

fuzziness. As a more concrete example, "the grade of importance" stated 

later in the applications can be considered. Though it may be adequate 

for uncerstandings of the statements that the grade of importance is 

picked up, it is not mentioned in this section. 

Now, fuzzy measures for expressing the grade of fuzziness are 

introduced. Let ~ be a Borel field of X. ~ has the following properties. 

(1) <P Eo Q3 

(2) If E Eo S, then E
C ~ 63 . 

00 

(3) If E ~ S for 1 < n < 00, then UE (;003· n n=1 n 

[Definition 1) A set function g defined on ~ which has the following 

properties is called a fuzzy measure. 
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(1) g(~) = 0 and g(X) = 1. 

(2) If A, B Eo S and A C. B, then g (A) ~ g eB) 

(3) If F E: 8 and {F } is monotone, then Hm g (F ) 
n n n n-+co 

j. . 

g (Hm F ). 
n-+co n 

U(:;!re, (1) means boundedness and non-negativity, (2) monotonicity, 

and (3) continuity. The property (2) is the most important one and (3) 

is essential only when X is an infinite set. 

In the above definition g (A) is the expression of grade of x E: A. 

In general, g(A) is interpreted as a subjective measure expressing the 

grade of fuzziness of a set A. Of course, this does not necessarily mean 

that A is a fuzzy set. Though A exists objectively for anyone, it is 

regarded fuzzy since it is associated with subjectivity when a person 

guesses, for instance, grade of xE A. In probability theory, a set A is 

called an event. But the terminology "event" is not used.because it is 

desirable to distinguish grade of fuzziness from probability (grade of 

randomness). 

(Definition 2] (X, 18 , g) is called a fuzzy measure space. 

Here g is called a fuzzy measure of measurable space (X, ('i3 ). When 

the domain of g is evident, g is simply called a fuzzy measure of X. 

Now, additivity is the most important property among the proper-

ties of ordinary measures. It is, however, doubtful that an individual 

uses a "measure" with additivity when he subjectively measures fuzzi-

ness. Though a reasonable man is imagined in the theory of subjective 

probabilities, it would be more realistic to assume that an actual man 

has no additive measure, because his behaviours are often contradictory 
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to the assumption that he uses an additive measure in evaluating things. 

Monotonicity is a very natural assumption on the subjective judge-

ments of an actual man, while additivity is a restrictive one. In many 

applications, it can be easily accepted that if A C B, then grade of 

x fA:::' grade of x E B. 

Further if the statements are adopted for the conditions satisfied 

by a man's subjective measure, it would be pointed out that the inter-

pretation of sUbjective measures becomes rather free in comparison with 

probabilities. It is very difficult to explain, for instance, the grade 

of importance in terms of probabilities, which will be discussed in Sec-

tion 4. 

Now assuming for simplicity that X is a finite set K, a fuzzy meas­

ure of a fuzzy measure space (K, 2
K

, g) is constructed in the following 

WCly. Two types of fuzzy measures are proposed in this paper. Those can 

be easily extended to an infinite case. 

Let K == {sI' s2' ••.••• , s } and 
n 

i o :::. g :::. I, 1 < i < n. 

i 
g is called a fuzzy density. 

(A) Let 

~ [ 
n 

Agi) IT (1 + - 1] == I, A 
i=l 

Define for K'C K 

g" (K') !. [ i 
= n (1 + Ag ) A 

s. e K' 
~ 

-1 < A < 

-1]. 

(1) 

00 . (2 ) 

(3) 

Then gA satisfies all conditions of fuzzy measures. From the definition, 
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it is obtained that 

i 
:::: g 1 1 < i < n __ , (4) 

and that if K' n Kit :::: <p, then 

g (K' U Kit) - g (K') + g (Kif) + Ag (K')g (K") (5) A - A A A A • 

When A = 0, gA becomes additive and, hence, equal to a probability 

measure. gA is called type A. It follows from Eq. (5) that if A<O,.then 

g, (K' U Kif) <"g (K') + g (Kif) 
I\. - A A' 

(6) 

and if A>O, then 

g (K I U K") > g (K ') + g (Kif) 
A A A' 

(7) 

(B) Let 

n i n 
i O<A<l.T (I-A) V g + A r g :::: 1, (8) 

i=l i=l 

Define for K' C.K 

* - A) V i 
+ A 

i 
gA (K') :::: (1 g r g . 

s. E K' s. E K' 
~ ~ 

(9) 

* When A:::: I, gA becomes additive. There holds, if K'n Kit :::: <p, 

* * * gA (K ' U Kif) i gA (K') + gA (Kif), (10) 

This is called type B. 

3. FUZZY INTEGRALS 

In this section, fuzzy integrals are defined by using fuzzy mea-

sures shown in Definition 1. 

T 
a Vb max (a, b), a A b = min (a, b), 

7 

n 
V a. :::: 

i=l ~ 
max 

l<i<n 
{a. }. 
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[Definition 3] Let h : X + [0, 1] be Q3 -measurable function. A fuzzy 

integral over A is defined in the following form. 

where F :::: {xlh(x} > ex}. 
ex 

In the above definition, the symbol ~ is an integral with a small bar 

and also shows a symbol of the letter f. The small circle is the symbol 

of the composition used in the fuzzy sets theory. 

Hereafter, it is assumed that all functions discussed in this paper, 

including constants, have the range [0,11. For simplification, a fuzzy 

integral is written as fAh 0 g(o) or J A hog. In the case of A = X, it 

is written briefly as f hog. Fuzzy integrals have the following proper-

ties. 

Let a E [0, l) I then 

f aog(o) :::: a, 

} (aVh) 0 g(.) = a V 5h og(o} I 

5 (a i\ h) 0 g (.) = a '" S hog (.) • 

If h ~ hI, there holds 

If A C Bf then there holds 

8 

(11) 

(12) 

(13) 

(14) 

(15) 



If {h } is a monotone sequence of ts-measurable functions, then 
n 

(16) 

If {h } is a monotone decreasing (increasing) sequence of S -measur­
n 

ble functions and {a } is a monotone increasing (decreasing) sequence 
n 

of real numbers, then 

V (a" f h 0 9'J. n ' n 
n=l 

(l7) 

There holds fAh 0 g = M if and only if g(AnF
M) ~ M ~ g(A n FM+O) I 

where FM = {xlh ~M} and FM+O == {xlh > M}. 

The fuzzy integrals are very similar to the Lebesgue integrals in 

their definition. Let h(x) be a simple function such that 

n 
T hex) = L: a'XE 

(x) , (18) 

i==l 1 . 
l. 

n 
where X E E. , E.E:Q3, and Ef)E. == 4>(irij). 

i=l l. l. l. J 

In the measure space (X, lE> ,ll), the Lebesgue integral of h over A is 

defined as 

5 h dll 
A 

n 
L: 

i=l 
a.ll (AnE.) • 

l. l. 
(19) 

< a . Let fur­
n 

ther F. == E. + E. 1 + •••• + E (1 _< i _< n). Then a simple function hex) 
l. l. l.+ n 

can be also written as 

n 
hex) == V (ai"xF . (x)], 

i=l l. 

(20) 

T 
XE (x) = 1 if x E E and XE == 0 if x ~ E. 
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and two expressions are identical. With respect to a simple function 

h on X, there holds 

fAh c g(.) = 
n 

V (ai " g (A(jF i) l. 
i==l 

(21) 

The similarity of Lebesgue and fuzzy integrals is clarified by compar-

ing Eq. (18) with Eq. (20) and Eq. (19) with Eq. (21) I respectively. 

Next a quantitative comparison is tried. Let h be a 8-measurable 

function. Then both integrals, fuzzy and Lebegue, with respect to a 

probability measure P can be defined and the following inequality is 

obtained. Let (X, S,P) be a probability space and h : X-+- [0,1] be 

a Q3-measurable function, then there holds 

5 X h (x) dP - f X h (x) 0 P ( .) I .:. i· (22) 

Since the operations of fuzzy integrals include only comparisons of 

, the above inequality implies that using only V .and 1\ , a value 

different by at most 1/4 from a probabilistic expectation can be obta-

ined. 

A fuzzy integral in (K, 2K, g) is calculated as follows. 

Let h : K+ [0,1]. Assume h(sl) < h(s ) < ••••• < h(s ). If not r rearr-
- 2 - - n 

ange in an increasing order. 

Define 

K == {s ,s. " ..•. IS}, 1 < i < n. 
i i ~+l n 

(23 ) 

Then it is obtained from Definition 3 that 

n 

V 
i=l 

[h(s.)f..g(K.)]. 
J. ~ 

(24) 
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There exists at least one j such that 

hCs. l)t\g(K. 1) < h(s.)t\ g(K.), 
J- J- - J J 

(25) 

(26) 

Clearly, there holds for this j 

= h (s . )" 9 (K. ) • 
J J 

(27) 

Thus, the value of a fuzzy integral is obtained without evaluating 

h (s. )" g (K.) for all i IS. Hore precisely, it is necessary for the cal-
~ ~ 

culation of a fuzzy integral to evaluate g(K.) at least for only three 
~ 

different i's. This fact is a very excellent one in comparison with 

ordinary integral calculus. 

A fuzzy integral is also called a fuzzy expectation in the sense 

of comparing it with a probabilistic expectation. As can be clarified 

from the preceding discussions, the essential difference between a pro-

babilistic quantity and a fuzzy one is that the former has additivity 

while the latter has only monotonicity. Therefore the meaning of differ-

ence between "randomness" and "fuzziness" can be grasped through the 

difference between a probability measure P and a fuzzy measure g. 

As is well known, the essential property of ordinary integrals is 

additivity stating that the area of a figure consisting of a triangle 

and a square equals the area of the triangle added by that of the square. 

Apart from visual figures such as a triangle or a square, "area" in 

a mathematically abstracted world is something with additivity hidden 

behind objects. This lIarea" can be measured by means of integrals which 

are constructed by measures with additivity. Thus it is possible to 
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state that measures with additivity are used to measure quantities with 

additivity and also suitable for this purpose. 

Now assume that objects have not additivity but at least monoto­

nicity. By what means can such objects be measured? Of course it may be 

possible to measure those by the ordinary measures. But their additivity 

does not seem to suit the objects which have no additivity. The fuzzy 

measures introduced in this section have monotonicity but not always 

additivity. Is it not expected that fuzzy measures are more suitable 

than ordinary ones to measure the objects with only monotonicity? 

4. APPLICATIONS 

In this section, fuzzy integrals are applied to the problems of 

subjective evaluation of fuzzy objects. Fuzzy measures, as has been dis­

cussed in Section 2, are considered as subjective measures for grade of 

fuzziness. When application problems are discussed, however, it is con­

venient to interpret fuzzy measures more concretely. This will be dis­

cussed in the examples of applications in this section. 

Now when a human being tries to measure and evaluate the objects 

which seem fuzzy, his evaluation is related to both, the nature of the 

objects and his own subjectivity. In general, there appears in the process 

of subjective evaluation the complicated interplay between the objects 

and the evaluater's subjectivity. In this sense I fuzzy measures should 

be considered to change their properties affected by the both of the 

objects and his subjectivity. 

The evaluation problems treated so far in systems engineering are 

mostly those which are based on objective standards, e.g., the perfor-
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mance indices of optimal control systems. However, the evaluation 

problems are discussed here which lead to different results according 

to the subjectivities of the individuals evaluating the objects. 

The concept of fuzzy measures is powerful particularly for dealing 

with these problems. 

4.1 Subjective evaluation of female faces 

Here, ,the problem of the evaluation of female faces is discussed. 

Pictures of about 100 young ladies were taken. The boundary conditions 

of these pictures are kept constant carefully. Thir'ty pictures are chosen 

at random and enlarged to actual size. Each of these pictures is cut 

into five pieces; those are eyes, nose, mouth, chin and all the remains, 

as are shown in Figs. 1 and 2. Those pieces are shown to a student (male) 

separately and according to his preference they are scored with a nume­

rical value between zero and one. The ideal face is scored one a~d 

the worst is zero. Now five values are obtained for each face. Next the 

complete picture is shown to the student, who is asked to score it by 

the same scoring rule. The problem is how to connect the score of a whole 

face with those of pieces. 

Generally, when a system is perfectly decomposed into mutually 

independent factors, a linear model is usually used to relate the overall 

and the partial evaluations. However, if the boundaries among the fac­

tors are not sharp and the factors influence each other, a fuzzy integral 

model is one of the powerful means to evaluate such fuzzy objects. 

The symbols SI' s2' •••. ,s5 are used for eyes, nose, mouth, chin 

and the remains. 
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Define 

From the above experiments, the function 

h. : K -+ [0, 1] 
J 

is ob~ained where j is the number of pictures. 

(28) 

If a linear model is used, the preference w. of j-th face is expr­
J 

essed as follows. 

w. = 
J 

a. h. (s.) 
~ J ~ 

(29) 

Using the fuzzy measure gA (type A) which is a student's subjective 

scale concerned with grade of importance, a fuzzy integral model is intro-

duced as follows. Here, grade of importance means to what extent one 

attaches importance to the elements of a face. 

Define 

Let e 

faces. 

max 
l.2.j <N 

Let d. 
J 

h. (s) 0 gi (0). 
J /\ 

{e.} and e = 
J 

(30) 

{e.}, where N is the total number of 
J 

denote the score of the whole face which is obtained from 

the experiment. Similarly, d and d are defined. Now, e. is normalized 
- J 

so that e = d and e = d. The preference w. is obtained as follows. 
J 

d - d de - de 
w. = e. + (31) 

J e - e J e - e -
The fuzzy measure gA is identified so as to minimize the following 

criterion J. 

01 N 2 
J = -N L (d. - w.) 

i=l ~ ~ 
(32) 

14 
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When "complex method" was used for hill-climbing, the minimum value of 

J was about 0.1. 

The comparison of the calculated value w with the experimental one 

d is shown in Fig. 3. Fig. 4 shows the fuzzy measures of two students. 

i In this figure, if g for a specific i is larger than the others, it 

means that the student thinks the i-th piece very important. So it is 

possible to know from Fig. 4 the characteristics of an individual who 

evaluates ladies' faces. As is shown in Fig. 3, the experimental results 

show a good agreement with the calculation by the model. 

The process of subjective evaluation can be explained qualitatively 

by using the concept of fuzzy measures. When a linear model is adopted, 

it is difficult to interpret the weighting coefficients. In Eg. (29), 

if a coefficient a. is large, then a partial evaluation h(s.) is enlar-
~ ~ 

ged. This implies that the value of the overall evaluation increases in 

the linear model even if a partial evaluation is small. However, a man 

will give actually a relatively small value to the overall evaluation 

when h(s.) is small. 
]. 

On the contrary, in the fuzzy integral model, it can be approxi-

mately stated that if a partial evaluation hCs.) is smaller than a fuzzy 
~ 

density gi, then h(s.) contributes directly the overall evaluation and 
~ 

if h(s.) is larger than gi, then the value of h(s.) is cut at that of gi. 
]. ]. 

This implies that a large value of i-th partial evaluation is cut when 

the grade of importance of i-th element is small. Therefore, it could be 

said that a fuzzy integral model can explain a h~~an evaluation process 

more qualitatively than a linear model. Further it should be pointed out 

that the concept of the grade of importance is convenient in represent-

ing a subjective evaluation process. 

15 



4.2 Subjective evaluation of residences 

This section applies a fuzzy integral model to the ec-

tive evaluation process of residences. A residence can be decomposed 

into four factors such as Facilities and furniture, from resi-

dence to office, and ~nvironment. These factors are important when the 

functions of a residence from the physical, psycological and physiolo­

gical aspects of human life are considered. Pinancial aspects such as 

the price of a residence and its maintenance cost are excluded in this 

evaluation, because this sort of factors are not regarded as the const­

raints related directly to the fineness of a residence. 

A man's preference for a residence can be expressed with a relation 

between the fineness of these four factors and the grade of the impor­

tance which he attaches to each of them. 

Let 

(33) 

where sI' 52' s3 and s4 show P, A, T and E, respectively. 

The value assigned to the fineness h(s) of a factor s is determined 

according to the common sense; it is not the value experimentally obta-

ined. Let hp = h(sl)' hA = h(s2)' hT = h(s3) and hE = h(s4)' Then h(si) 

for each residence is calculated as follows. 

hp O.la + O.OSb + O.lc + O.2d + O.le + O.lf 

+ O.2g + O.lh + 0.05i, (34) 

where the variables at the right side are the fineness of the 

facilities for heating, cooling, water supply, drains, toilet, 

gas, bath and garrage, respectively. 

16 



= 0.8j + 0.2k, (35) 

tJhere j and k are the degree of satisfaction obtained from 

the floor and the garden space, respectively. 

For exampla r j and k are given as shown in Fig. 5 when a farnily is 

consisted of a couple and two children. 

h = 0.5 + 1.42 tan-1 0.05(60 -. l), 
T 'IT 

(36) 

where l is the total time required to go to an or:ice from 

the residence. 

The graph of hT is shown in Fig. 6. 

hE = O.2m + 0.2n +0.10 + O.lp + O.lq + O.lr 

+ O.ls + O.lt, (37 ) 

where the variables at the right side correspond to cleann-

ess of air, disturbance by unpleasant noise, fineness of 

sun shinning, convenience for shopping, playing, going to 

school and hospital, and green area, respectively. 

All the samples of the residences used in the experiment are roughly 

scored by assingning the value between zero and one to each vari.able 

from a to t. The values for the aggregated four factors h(s.} for I < 
~ 

i < 4 are shown in Table 1. 

* In this application, a fuzzy measure gA (type E) is adopted as 

a subjective measure for preference. According to Eqs. (30) and (31), 

a fuzzy integral model of preference is obtained. In analogous way of 

the previous section, several subjects are asked to score each residence 

with a numerical value between zero and one according to their prefer-

ence. Then their fuzzy meausres are identified as in Section 4.1. 

17 



A linear model of Eq. (29) is also examined in this case and the weigh-

ting coefficients are determined by the same method. 

The experimental results for a house wife are shown in Table 2. 

From these, it may be concluded that (1) environment is attached high 

importance, (2) the importance of facilities and that of area are medium, 

and (3) time is ignored. In her case, almost same conclusions are obta-

ined by the both methods. 

Note that in the both applications, the identified fuzzy measures 

do not satisfy additivity. 

CONCLUSIONS 

In this paper, the concept of fuzzy measures and fuzzy integrals 

has been presented and two applications have been discussed. A fuzzy 

measure is a monotone set function and it is regarded as a subjective 

scale for fuzziness. A fuzzy integral represents the value of subjective 

evaluation measured by a fuzzy measure. 

In the evaluation problems of female faces and residences, a fuzzy 

integral model has been proposed to express a man's subjective evalua-

tion process. Its effectiveness has been also clarified. 

It is expected that the idea of fuzzy measures and integrals will 

be widley applicable in the many fields of engineering. 
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Fig. 1 Example of Female Face 
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The Number of 
hF hA hT hE Resi'dences 

, 1 ,0.86 0.73 0.79 0.53 

2 0.84 0.57 0.85 0.75 

3 0.56 0.26 ' 0.39 0.00 

4 0.87 '0.5'0 0.61 0.68 
, ' . . , . 

" 

I 
5 0.60 0.'12 ' 0.94 0.63 

6 0.74 0.80 0.21 0.,50 . 

7 0.97 .0.92 0.61 0.90 

8 0.66 0.41 .0.85 0.68 

9 0.85' 0.49 0.29 0.73 ' 

10 0.72 0.51 0.15 0.78 

11 0.51 " 0.31 0.39 0.48' 

12 0.61 0.10 1 .00 0.00 

13 0.97 1.00 0.94 0.80 
. 14 0.68 0.32 1. 00 0.45 

15 0.62' 0.42 0.21 0.78 ' 
,/ 16 0.64 0.76 O. 15 0.80 

17· 0.90 0.84 0.50 0.83 

" 18 0.71 0.61 0.03 0.80 

19 0.95 0.67 0.97 0.70 

Table 1 Fineness of Residences 

. 

----- F A T E 

Coeffi ci ent of 0.78 0.43 0.17 1.0 Li near Model . 
Fuzzy Density 0.62 0.78 0.33 1.0 

Table 2 Grade of Preference for Residences 

23 



~. 1'1/2. 7D 

An assessment of' a f'uzzy control algorithm f'or a nOll-

linear multi-variable system 

R.M. Tong 

British Steel Corporation Research Associate 
University Engineering Department 
Control and Management Systems Group 
Mill Lane 
Cambridge CB2 IPX. 



S". 11 1'2. 7/ 

1. Introduction 

Several important industrial processes, in particular 

the basic oxygen steelmaking process, cannot be satisfactorily 

controlled by the use of standard control theory. The 

reasons for this are several, but some of these are the lack 

of quantitative information about the process which is 

invariably non-linear and multi-variable, and the need to 

interface meaningfully with the process operator. On the 

other hand, there is often considerable qualitative information 

in the form of standard operator practices which reflect 

experience and training. Earlier workers, Mamdani and King 

t11 and Ruther.ford \2] , have demonstrated the usefulness of 

Zadeh's notion of fuzziness (J) in the design of' control 

algorithms based on logical statements about linguistic 

variables, and this paper presents some further results from 

a preliminary study into the design of fuzzy controllers 

for non-linear, multi-variable systems. 

2. Simulation experiment 

A moderately difficult plant to control is a pressurised 

tank containing liquid. This can be reprf!spntpd A('tH~matical1y 

as, 

p 

t--------I h 



where h is the liquid level inside the tank, P is the internal 

air pressure, Qi is the liquid inflow and ~ is tbe air 

inflow. The control problem is to regulate both the liquid 

level and the total pressure inside the vessel. The tank's· 

behaviour is governed by two nonlinear dfrferential equations, 

namely 

dh -dt 

dH 
dt 

= 8.0 H~ + a, Q~ 

:::: 

where H is the total pressure (h + p) and a o ' a r , bo , ••• , b~ 

are constants which depend upon the physical properties of 

the tank. 

One advantage of using this process for a preliminary 

study is that it has been considered in the control literature. 

In particular, Macfarlane and Belletrutti [4] lU'lVe It nearised 

these equations and designed a controller using characteristic 

locus methods. Further, using their linearised equations an 

optimal stochastic regulator [5] can be designed against which 

the fuzzy controller can be compared. 

The pressurised tank, called a headbox in certain paper-

making processes, has four characteristic features which are 

important in designing a fuzzy controller. These are -

a. the time constant associated with total pressure changes 

is much faster than that associated with changes in liquid 

level 

b. both inputs affect total pressure, but only air inflow 

affects liquid level significantly 

c. a positive change in air inflow produces a negative change 

in liquid level 



d. the process is stable f'or small perturbations about the 

operating point 

J. Algorithm structure and design 

Because the headbox has two very diff'erent time constants, 

the algorithm concentrates on bringing the liquid level to 

the set point before attempting control of total pressure. It 

does, though, try to minimise the change in total pressure 

which results from control action designed to regulate liqUid 

level. Regulation of' total pressure is only attempted when 

the liquid level is approximately at its set point. 

Since ai.r inflow is the only input which alters liquid 

level, it is used as the main control variable. Because 

airflow also changes total pressure, the other input, liquid 

inflow, is used to counteract these changes. When liquid level 

is under satisf'actory control, liquid inf'low becomes the main 

control variable since it is the only one which can af'fect 

total pressure. 

Another general feature of the algorithm is that, since 

the process is stable about the operating point, i.n situations 

where the control policy 1.8 not obvtous the algorithm makes 

no change to the controller output. 

Following Mamdani and King, the inputs to the algorithm 

are error and change in error but in contrast to them, and 

Rutherford, the outputs from the algorithm can be either 

absolute values or incremental values depending upon the size 

of' the error. If the error is "large", then the outputs take 

absolute values, and only when the error is II smal1" does the 

algorithm give incremental control outputs. 



To aid comparison with previous work, the fuzzy sete 

have been given similar names to those used by Mamdani and 

King, and some of the rules used are shown below. 

~ ~= ft.\.ttS. ~ ... AN"I. e." .. f.E'. ~~: ~~ 

~ e" ~ NB "'" ~ • de",,:::" &:\Mf. ~ '& ~ • d~ ... f\t.l"f 

are the pressure error and level errors 

respectively, deM, de~ are the changes in the errors and QL 

and Qu, are the liquid and air inflows. The complete algorithm 

hae J7incremental rules and 9 absolute rulefl. It is not 

necessarily the "beet" controller for this proeeSfl hut is a 

useful vehicle for experimental purposes. 

4. Algorithm implementation 

As pointed out in earlier work, it is possible to "tune" 

the rules at several levels. Firstly at the lev.el of the set 

definition, secondly at the level of the support set definition, 

and finally at the level of the rules themselves. Undoubtedly, 

the latter is more powerful but, in engineering situations, 

changing the support sets is probably easier since it .is 

equivalent to changing the loop gains of the controlled process. 

The primary aim of this study, then, was to assess the 

sensitivity of the algorithm to changes in its implementation. 

A secondary aim was to observe the performance of the controller 

in a noisy environment. 

The support set for error and change in error was the 

set of real numbers which was divided into seven discretised 

levels, namely 
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Level Range 

1 e < -0.5 

2 -0.5 ~ e < -0.2 

J -0.2 ~ e < -0.1 

4 -0.1 ~ e '\ 0.1 

5 0.1 < e ( 0.2 

6 0.2 < e ~ 0.5 

7 0.5 < e 

The support set for the control output was also the set 

of real number~ but was apprbximated by ri.ve rliscrete points, 

namely 

U := \. -10.0, -1.0, 0.0, 1.0, 10.0 ! 

The single-valued measurements of the process were 

considered to be fuzzy singletons and the output control set 

was derived by using the compositional rule of inference. 

111e single-valued control action was chosen from the control 

set by se1ecti.ng that with the maximum membership function 

value. 

A diagram of the simulation configuration is shown i.n 

f'igure 1. An amplitude constraint is imposed on the control 

inputs to the process thus simulating a control valve which is 

either fully open or fully closed. 

The results of' the next section show the effects of 

changing the range of the control outputs f'rom the incremental 

rules in the algorithm by changing gains G and G. They also 

demonstrate the effect of changing the process sampling interval 

and the ef'f'ect of' adding noise to the measurements. 



5. Simulation results 

The simulations consist of' .five experiments., 'nle f'irst 

three of' which investigate the response of' the process to changes 

in the set points. The f'ourth experiment compares these 

responses with those of' the controller designed by Macf'arlane 

and Belletrutti. The f'inal experiment compares the perf'ormance 

of' the fuzzy algorithm with both Macf'arlane and Belletrutti's 

controller and an optimal stochastic controller when noise is 

present in the measurements. Not all the re~ults of these 

experiments are shown here but can be round in ref'erence [61 

which has f'ull details of' the control rules. 

Sol First experiment : set point change 

The f'irst experiment examines the response of' the process 

when both set points are increased by +1.0. Figure 2 shows 

the response when G, = G~ = 0.1, the sampling interval is O.ls 

and there is no noise present. In common with all the results 
. 

shown in this section, the zero line is the nominal steady state 

of' the process. This corresponds to a liquid leve1 of 1 ft., 

a total pressure of 16 ft. of water, a 1iquiri inflow of 24 cu.ft./s 

and an air inflow of 26 cu.f't./s. 

Notice how, in f'igure 2, the characteristic features of 

the algorithm are exhibited. The controller works hard to 

bring liquid level near its set point. Only when this is achieved 

is direct control of' total pressure attempted. Notice also 

the two phases of' the controller. In the first three seconds 

when the error is large, the algorithm gives absolute values 

of' control, therea.fter, the error is small and the algorithm 

has an incremental output. 
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good. 

The control1 ed response is therefore 1':;een to be quite 

The open loop-time constant of liquid level is of the 

ord<'r of ten mi nil tes whereas. using the algori thm described. 

liqllid level is hrought to its set point within 20 seconds 

under closed loop control. 

Fj,gure J shows the effect of setting G 1 = Gl 1.0 hut 

leaving the sampling interval unchanged. Notice how the 

response is improved, liquid level reaching set point, with 

no overshoot, in under ten seconds. Th Is is och i f'v~!d, thongh, 

at; I.IH' pxppJ1se of more ViP;OT'OIlH ('ontroJ actloll. 

l<'if;llt'P I, flhows !:tIP nf'f'p('l: 011 this r'Hsponse wlH!tl the 

sampling inter'vat is incroasNi to 2,Os. In 1ll8ny ways, thE' 

response if'! hetter', but, as the results of IIIP IJPX!' ~(>('tinn 

show, this is not n consistfmt rf'sult. 

5.2 Second experiment : set point cbange 

This experjment dernonstral:es thf~ J'f~SpOI\Sf' of thE~ pn)cess 

to H ('hange in set. point; of d.O in total pr'(>SSIIT'P only. 

0.1 and I tw 

13 ,1111 (l I I Ilf~ in 1,(- !'v:J1 is (). I H , 

a nOli-I i r)(~ar' f-lystem. J • () 

ha~ thf' desjred effect, Hee figllr(·! 6, of' br'inging total fn'PflflUI'(' 

to its new set point in about 12 seconds without, disturhing 

liquidlovel significantly. However, i.twreH",ing the samplitlf',' 

to 2.0s gives rise to osci.l1atory belH'lvjollr, HP!' rigllf'e 7. 

5.3 Third experiment set point cbange 

The final S(~t point experiment exrmliTlf'S thp systeml'l 

reHI'OI1Hl' to n APt. point, change of +1.0 ill IIII"id Ipvpl !!lily. 



Fjgur'p R shows the response when G I := Gt. 0.1 and the 

sampling interval is O.ls. Note the limit cycl.es. In this 

caRP changing G, and GS, to 1.0 was not suff'icient to stabilise 

thp response but was only achieved by setting G I 2.0 and 

GL ~ 1.0, see figure 9. Again, increasing the sampling interval, 

this time to 0.5s, gives an unsatisfactory response, figure 10. 

5.4 Fourth experiment: comparison with 'M & HI controller 

In order to compare the hes t responsps of' the f'uzzy 

controller with n controller dpsip;ned in n mot'e (Conventional 

way. i t i SliP (' (>."l S ,H' Y t; 0 J i ne a r i s f' t:tH~ e q II n t i () n s g i v p n ins e c t t () n 

deRigrwd a controller. S i mu I at; ion 0 f the pro c ~~ ss with the i r 

controller replacing the IUzzy controller gave the rpsults 

shown i 11 fi gures 11, 12 and 1'3. COITes pond i nf!,' to se t POl n t changes 

in prpSSl.lre and level, pressure only and lE'vP I on I y. These 

are much better, as expected, although the ovprall shape of the 

controller reSpOtli'l(~ in e;l(~h case i.s not di.ssimi lar to that of 

the fuzzy con t rn 1 '1 pr. 

u.. Fifth experiment Htocha!:'li,ic control 

lJ~ing I!l(~ lineariHPd hendhox eqIlHt:ion~ of UIP Pt'PVj(HJR 

exppriment, it is posAihJe to rl('sign an optilllil\"'tochnstir 

regulator for the headbox. Figures 14, 15, 16 and 17 show the 

behaviour of the controlled process whf'Tl meHS11t'PtnPIlt lloiR(' iB 

in t rorlu(' ed to thE'! sys tern. This experiment ('ollsisted simply of 

keeping the set points at their set state values and Fllteri.ng 

the variance of the measurement noise. The mPFlfl sqnare olltput 

va] UPS And the mean Aquare contro 1 values we t'P (':I I ('111 A ted foy' 



each combinati.on of' noi.se variance and controller and are 

plo" ted in the f'i gures. 

F'i gure III shows the mean flquare total pressure, y~ 

Notice how close are the curves of the optimal stochastic and 

M &. n contro]] er. But notice aJso the shape of the fuzzy 

contf'ol ter curve. For a range of noise variRnces between 0.01 

and 0.1 this is almost flnt, indicating that the controller is 

insensi.tive to noise amplitude over this range. Jt-'igure 15 

shows the- fl;~me curves for mean flquare liquid level t y~ In 

this CHse al.l three eontrollers give a similar performance. 

F'igllf'f> 1(/ Rnd 17 flhow the mean squarf! controls, u" I , And 

i7~ , and giv(! a raUwr differ(mi picture. Whi 1st the optimal 

8tochastic contro]]pr still hafl the tH~st pE.H'fonnanc:e, the 

fuzzy controller does better than that of M<'lcfnr'lane And 

Belletrutti. Thi s is simply bec:ause the fl17,ZY contr"oll er has 

a limited range of control Olltputs and tws diHct'etifled i.nputs. 

6. Conclusions and further work 

Tllf!Sf:' n~R1l1 tA hi glt I j gh L thn two ma in fwoh I PtnA i TI fllzzy 

c () n I rol 1 e r d (> A j gt) • r"ir'Hl.ly, tlH' d{-~riv;'If;joll of U1P rlllns ill 

UlP ('ontrol ;d,r,or'i (,tun and I'leeolldly, the impll'llIflllial iOIl of 

theRP t'lrlns in !I tlOt1-I'II7.ZY environment ~tlch ;IH It dit':if:al compul,pr'. 

Whi I A t in no way g-i vinr; an answ{-~r to thesp prohJ PITH'!, thB r'eslll ts 

do show tbeimporLRllc:e of a earpf'1l1 choice of' illll'lf'lHetlt<ltion 

parameter!'!. 

The resul t8 are encouragi ng, however, and work ;, n the 

:futllre will eonsider the ef:fect of other implBmentation parameters, 

such as the number of discretisation levelfl in tllp SIlPPOt't sets 

and ttw choice of !'!ingle-valued control from !.tIP OlILpnt ('(1 11 tt'o1 



set. 

On 1:1 more general front, there is clearly a need j'ot' 

a cuheren L tlwory 0 f control for fuzzy sys tem::;. Withollt it, 

each ap!>!.1 ca t i OH can only be trea ted on an ad hoc bas i.::-3 and 

the ul timate uSt:d'ullWSS of the t'uzzy set approach wi LJ remain 

ill doubt. 
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