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Digitization of Discrete Systems and Fuzzy Reasoning

There is growing historical interest in the early days of fuzzy
linguistic control. This document is a digitized version of the
proceedings of the first workshop that Abe Mamdani and I organized
in 1976, the year after I published his and Assilian’s paper on
Assilian’s doctoral research in the International Journal of Man-
Machine Studies. It contains some 8 papers on fuzzy control arising
out of that research as it began to attract industrial interest, together
with related papers on fuzzy reasoning and multi-valued logic that
reflect the state-of-the-art in 1976.

[ printed a substantial number of the original proceedings at the
University of Essex and distributed them widely at the time, but they
are difficult to obtain now, and making them available in digital form
seemed a useful task.

I dedicate this version of those proceedings from some 36 years ago
to two close friends and colleagues from that time who are no longer
with us, Abe Mamdani and Ladislav Kohout. We worked hard
together, shared many exciting ideas and ideals, had a lot of fun, and
enjoyed living in interesting times.

Brian Gaines, Vancouver Island, April, 2012
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FOREWORD

The Fuzzy Workshop held at Queen Mary College on Friday 9th January.
1976 was aimed at bringing together the several groups workingloﬁ fuzzy
reasoning in the U.K. It echoes the similar workshops held in the U.S.A.,
Japarn and Europe, in attempting to consolidate and cross~fertilize this
rapidly growing Field.

' The Workshop itself was a successful occasion for the participants.
These proceedings make some of the material presented available in Qritten
form to the participants, and to a wider audience. Note that these are
both working papers and papers published elsewhere in these proceedings
(an indication is given if the proceedings are a proper referénce). Also
there is no direct link between the presented papers aﬁd the written ones.
The Workshop was anvexchangerof views - the proceedings are an exchange of
inforﬁation. |

As organizers we owe a vote of thanks to the several postgraduate
“students of Queen Kary College who helped to make the day run smoothly, to
fhe catering staff who excelled themselves, and finally to the participants

who made it worthwhile.

E. H. Mamdani

B. R. Gaines
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WORKSHOP ON DISCRETE SYSTEMS AND FUZZY REASONING

" Friday 9th January, 1976

Discussion Session I & IT reported by T.J Procvk

Chaired by Dr. E.H. Mamdani

Professor M'Pherson began the discussion by raising the
questicn of the relative cost-effectiveness of a fuzzy,two-
term and human controller for the sinter plant. Mr. Hague
'said that the fuzzy controller was more costly than a two-
term one even if implemented in table look~up form on a
microprocessor. He was in agreement with Dr. Mamdani that
using a microprocesgor is often a false economy owing to the
time required to interface it and program it. Dr. Mamdani
was of the opinion that full facilities of a microprocessor
are not required to implement a fuzzy controller but just a
table look~up memory. '

The most fascinating piece of work coming from the session,
according to Professor Gaines, was the move upwards into
implementing a second hierarchical level capable of supervising
the lower one. The ability to define a fuzzy gcal from which
the control rules evolve was a significant step forward.

This 'bottom up' approach of starting with a simple problem and
building it up in complexity was a philosophy that Dr. Mamdani
said he adopted and suggested it as a useful approach for
tackling complex problems. Professor M'Pherson, who thought
that Fuzzy Logic theory had not yet developed sufficiently to
be applicable to many classes of problems, agreed with

Dr. Mamdani that Zadeh's theory is only 15 years old and still
in its youth. Dr. Mamdani believed that Zadeh is constantly
revising his theory and extending it so it should not be
regarded as final. The added merit of Fuzzy Logic theory was
that it is still open to modification unlike other multi-valued
logics.

Mr. Hague wished to point out that because of the difficulty
of designing non-linear controllers the success of the fuzzy
controller is an important step in controller design. ‘The
results obtained by Professor Gaines from analysing the steam
engine controller showed that it was very robust and insensitive
to small changes in its structure. The reason why many classical
controllers were sensitive was, according to him, because of the
stress put on exactness in calculations which produced numerical
differences smaller than the noise margin. Dr. Mamdani added
that the source of this robustness lav in the fact that the
fuzzy controller was not a pedantic one but, from common sense,
a reasonable one which consequently lent itself to a wide range

Cont'd.....



/10

2 - :

of successful applications.

The concern for a lack of suitable stability theory for
fuzzy controllers and their trial and error synthesis was
voiced by Professor Hammond. Dr. Mamdani replied that
stability theory is always used with a mathematical model
anyway which is not always exact. Consequently full
confidence in a control system's stability is never justified.
He did not think that such a theory existed since there is
no equivalent of a frequency domain, in which stability is
tested, for discrete systems. He added that because of the
common sense nature of the rules runaway instability cannot
arise. The oscillatory type of instability is less serious
and can be cured by tuning the rules.

Professor Gaines put forward a state-space approach which -
could be used for stability analysis. It consisted of the
state-space marked.with areas over which individual rules have
control and from this the system trajectory could be determined.
The main objection to this method was made by Mr. Kickert
saying that it was only practical for two dimensions while
instability was only important for 3rd order systems upwards.

Professor M'Pherson gave examples of some fast and accurate
systems found in the defence industry for which fuzzy logic
could not be conceivably used. This was very true, according
to Dr. Mamdani, who did not regard fuzzy logic as an alternative
answer to control problems but as useful in certain applications
for example the sinter plant or cement kiln. Professor M'Pherson
nevertheless admitted that fuzzy logic should at least be tried
in new applications and not dismissed at the outset.

Dr. Smith stated that he was not concerned with stability
as much as the control engineers were because he did not
believe that systems like management information or air traffic
control, with which he is concerned, would ever become closed-
loop. 1In his opinion fuzzy logic had a place in such systems
as a heuristic aid or guide with a human being present in the
loop.  Stability analysis was then not of such vital concern.

On a historical note Professor Gaines, concluded the
discussion by commenting on the tremendous disruption caused
by the 2nd World War and the ensuing period to work in multi-
valued logics. Only now has the work which terminated at the
outbreak of the war been again revived and started to gain
interest.
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FUZZY CONTROL OF RAW MIX PERMEABILITY AT A SINTER PLANT

G.A. Carter and M.J. Hague

British Stecl Corporation,
General Steels Division,
Research Organisation (Teesside).

INTROLUCTION

The use of fuzzy set theory to design controllers has been
pursued as a combined project by the University of Manchester
Institute of Science and Technology and the British Steel
Corporation. The project has a two~fold purpose:

(i) To establish the worth of a "fuzzy set"
theory and fuzzy logic to practical plant
control.

(ii) To provide a generalised control tool for
' systems where the plant dynamics are
poorly described.

Control system development requires some basic knowledge
of the dynamics and statics of the plant to be controlled. 'The
knowledge is conventionally obtained from one of two scurces:

(i) A theoretical relationship between the
controller variables and the controlled
variables.

(ii) A statistical appraisal of input and output

signal spectral densities.

The ability of using fuzzy set theory to "describe" a controller
to a computer opens up the possibility of utilising performance
-criteria used by good operaters to calculate an advised contro:
action to all cperators. The application to blast furnace control,
where computer models are rarely as accurate as good operators,
is an obvious future consideration for fuzzy control advice.

A At a Cleveland sinter plant, a two term controller exists for
the control of water flow to a mixing drum and the opportunity has
been taken to try fuzzy logic control so that some comparisons can
be made. The Cleveland scheme represents a good test bed since
the plant is non-lincar and there exists large measurement noise
and input disturbances.
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THE PLANT

(a) OEeratiori

~ Raw mix of iron ore (60%), sinter fines (35%), coke (4%)
and flux addition (1%) are fed to a mixing drum where water is
added to optimise the permeability of the mixture just prior to
laying it on the grate for sintering. If the mix is too dry, the
bed will choke and little air can be drawn through the bed for
ignition and combustion. Thus the time for the bed to "burn
through" will be long and the production rate low. Similarly,
the mix must not be too wet otherwise the bed will sludge and
again production rate will be low. This is described diagram-
étically for the sinter plant by Figure 1. The shape of the
permeability/moisture curve is not fixed since it will depend on
granulometry and the proportioning of the materials, both of
which have to be changed for operational reasons.

Manual control of water addition which is the per shift/per
hour selection of best water valve position, allows considerable
fluctuation of permeability and therefore sintering rate to occur.
The automatic control of water addition measures the pre-mix
permeability and adjusts the water to achieve a set point value.
The set point value is near to but on the dry side of maximum.

(b) Plant Dynamics

The control scheme at Cleveland Sinter Plant is shown in
outline by Figure 2. The transfer function between water
addition and permeability to a first approximation is of the form -

. T
Change in permeability (s) =G e S T (1)
r\ - » S — O At ————————— .o
Change in water 1 + ¢T»

T
T,

20 seconds

30 seconds

The permeability is "sampled" once every 30 seconds.
Uncorrelated measurement noise is assessed at between 10% and
30% of the total measured signal. The gain term 'Go' is the
slope of the permeability/moisture curve.

SIMULATION STUDIES

A simulation of the performance of the sinter plant and
the fuzzy algorithm was used as a dynamic check on the viability
of the proposed controller.
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The plant was reprcsented by a transfer function of the
form of equation (1) with the gain term Gq represented by an
adjustable non~linear function to simulate the non-linear
relationship between moisture and permeability. In this
way a range of characteristics similar to those shown in
Figure 1 were simulated. The control rules relate error
“and sum of error to changes in water addition as shown in
Figure 3. '

Initial tuning of the controller was done by adjusting the
 scale factors associated with the look-up table using a procedure
similar to that used when tuning a conventional controller.

, The overall performance of the system was assessed in a
number of ways:

(a) It was found that the transient performance
was only slightly affected by changing the
timé constant in the range 2:1 and changing
the dead time in the range 1.5 to 1.
Performance was also satisfactory for
process gain changes in the range 4:1.

(b) . Changing the permeability moisture relation-
ship to simulate changes to the raw material
characteristics and to the initial moisture -
content did not result in any significant
degredation in performance, provided the
plant did not move into the region of negative
slope.

(c) The response of the syétem to step changes
in permeability set point was compared with
t hat obtained with a conventional PI controller.
‘A range of gains were used and similar results
obtained, except that when the onset of
instability was reached the fuzzy controller
gave 2 more gradual run away.

(d) The effect of measurement noise on the system
was compared with that obtained when a PI
controller was used. It was found that the
fuzzy controller was better than the PI
centroller in that it gave a further reduction
of between 10% and 15% in the mean squared
error when the simulated noise levels were
similar to those expected on the plant.
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The results indicated that the fuzzy controller was
sufficiently insensitive to plant characteristics to justify a
plant trial and that it should operate satisfactorily on signals
containing noise.

RESULTS OF PLANT TRIAL

A trial was carried out at Cleveland Sinter Plant, Teesside,
on No.4 Strand during September and October, 1975. The two-
term controller was replaced by a po:rtab}e PLP 11/10 mini
computer (8 k stere).

The system was allowed to "track" for a period of about
an hour to establish the "manual" level of permeability variations.
Then the computer was switched to "control" and, after transients
had decayed (16 minutes), the reduction in permeability deviation,
© manual to fuzzy logic control, was noted. A reduction in ST of
40% was recorded (Table 1). A similar trial, in two-term control,
records a 33% reduction (Table 1) which is typical. The range
of reduction achieved with two-term control varies considerably
from 20% to 40%. Typical differential pressure (which varies
inversely with permeability) versus time recordings are given in
Figure 4. :

The irial was repeated on a later occasion when fuzzy control
again, without any on-plant tuning, achieved a 23% SD reduction.
Sorne attempt was made at ‘on line' tuning. The scale of the
control fuzzy set was reduced by half; the result was a 38%
reduction in permeability standard deviation compared with
manual. Increasing the scale of the set by two indicated that
control was ineffective with a marginal increase in permeability
variation. ‘

DISCUSSION OF PLANT RESULTS

The essential part of this experiment was to demonstrate
that a new contirol theory, using fuzzy logic could be used to
control real plant containing noise and non-linearity. The results
amply demonstrate that fuzzy set control meets the requirements
on this plant.

FURTHER WORK

Confidence has been obtained in fuzzy logic control and it
is now intended to apply the method to plant where the require-

[P ——
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ment for little or no on plant tuning is matched by a poor
knowledgce of the plant, yet whose control philosophy can be
written down as a set of linguistics.
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THE FOLLOWING CONTROL RULES ARE PRESENTED IN THEIR LINGUISTIC

FORM TOGETHER WITH THE TABLE OF OUTPUTS THEY GENERATE

"ALGORITHM { |
IF E IS PBAND S IS PB ORPM ORPS THEN W IS PB
IF E IS5 PB AND S 15 ZE ORNS THEN W 15 PM
IFE IS5PB AND S 15 NB ORNM THEN W 15 ZE
IF E 1SPMORPS AND S IS PB OR PM THENW 1S PM
IF E 15 PM AND S IS PS ORZE THEN W ISPS
IF E 15 PS ANDS IS PM OR PS ORZE THEN W IS PS
IF E IS ZE AND S IS PB ORPM THEN W IS5 PS
IF E 1S ZE ANDS 1S PS ORZE ORNS THEN WIS ZE
IF E IS ZE AND S IS NB OR NM THEN W ISNS
IF E 15 NS ANDS IS NMORNS ORZE THEN W IS NS
IF E 15 NM AND S IS NS ORZE THEN W ISNS
IF E IS NM ORNS ANDS IS5 NB OR NM THEN W ISNM
IF E ISNB AND S IS PB OR PM THEN W IS ZE
\F E ISNB AND S 1S PS OR ZE THEN W IS NM
IF E ISNB ANDS 1S NB ORNM OR NS THEN W 1S NB
' E
-6 -5 -4 -3 -2 -] © | 2 3 4 5 &
-6 |-3 -3 -2 -2 -2 -2 - -l o 0 ©O O ©
=% -3 . -3 . -2 =} .=2 2. =} g 0.0 .0..0 O
-41-3 -3 -2 - - = -1 -1 o0 | o o ©°
-3 -3 -2 -1 - -« <4 o © o 1 | 1 1
-21-3 -3 -t -1 44 -« © o0 0 I 2 2 2
-t |=3 -3 -t -1 -4 <4 o o I t I 2 2
sfol|-2 -2 -t -t -« -t o t 1t | t+ 2 2
b -2 =2 <t -t -t o o t 1 1+ 1 3 3
2l-2 -2 -2 -t o o© o {t 1 ¥ 1 3 3
3(-1 -1 -1 <1 © © o | 1 1 1 2 3
4lo o o <1 o 1 1 t 1t 1 2 3 3
s5]lo o o o o t 2 2 + 2 3 3
6lo o o o o 1 | 2 2 2 2 3 3

FIG.3.
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voLTs (oP)

MANUAL CONTROL

32

> TIME (MINUTES)

yourts(e®) FUZZY SET CONTROL

= TIME (MINUTES)

TYPICAL CURVES OF PERMEAMETER DIFFERENTIAL PRESSURE
VERSUS TIME BOTH IN MANUAL AND AUTO CONTROL

FIG. 4.
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SD OF %% REDUCTION .
TRIAL TYPE OF pwrerenTAL|  INsp | DATE OF
| (voLTs)
1. MANUAL ' 0-27 ' - 8 SepT. '75
FUZZY SET 016 4.0%
2. MANUAL 026 - 23 sePT. 75
FUzzy SET ©-20 239,
FUzZZY SET(ER) 016 38%
| Fuzzy sSET(%2) o-27 -4°%
3. | MANUAL o8 - |2 oc1.’75
TWO TERM o-12 '33%,
CONTROL

TABLE SHOWING RECORDED CHANGES IN STANDARD

' DEVIATION OF PERMEABILITY FOR DIFFERENT MODES
. OF CONTROL | |

TABLE {.
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CONTROL OF COMPLEX SYSTEMS
BY FUZZY LEARNING AUTOMATA

by

Y.M.El-Fattah

1. AIMS OF THE PROJECT:

- The aim of the project is to search for new methods
for control of complex systems, where the goals , the
eonstraints, and the consequences of possible actions
are too 111 defined or complex to admit of precise or
conventional mathematical analysis. It is hoped that
the research results could be applied to a specific
technological process.

2. METHODS OF THF PROJECT:

The theory of fuzay se%s and automata will be mainly
employed in that search. The research will parallel the
development of learning control systems which has tradi-
tionaly drawvn on Markocv processes, statistical decision
theory, automata theory, hill-climbing techniques, infor-
mation theory, and pattern recognition,ef. e.g. Y.M. EL-
FATTAH [11,1(2), K.S.FU [3] , L.M.LYUBCHIXK and A.S.POZNYAKX
[4] . The search will attempt to extend and elaborate on
the results of related works like S.S.L.CHANG and ZADEH 5]
W.G.WEE and XK.S.FU 6] , K.ASAI and S.KIiTAJIMA4[?] ., L.A.
ZADEH [8] , to mention just a few . ‘ '
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S« OUTLINE OF THE ANALYSIS:

Let U c R" be the set of feastble controls, and
Y ¢ R" be the set-of system outputs. At any time step
t denote the control input and the system oﬁtput by u(lt)
and y(t), respectively. The next system output y(t+1)

28 considered as a fuzzy set p(t+l) on Y. The controlled

system 18 represented by a fuzzy mapping [&5 1from ¥ xU
tnto Y,

(1)

(y(t+1)) = (y(t),ult);yl(t+1)).

Mprte1) M

- The control policy is represented by a fuzzy mapping
from Y into U

(2)

uq(t+1}(u(t+1)}= ug(y(t);u(t+1))

The control u(t+1) is represented as a fuzzy set q t+1)
on U,

We carry out the discretization of the domain of
outputs Y and controls U into some sets of subdomains
{Y;} and {U, }respectively such that

‘ ' s
Yi# 0, ¥, 0Y.=0 (i#]), chy’.ui Y=Y, (1,451,..,8,)
, 1=
(2)
82
Ui# e , Uin sza (T#7), UicU,‘uI UixU,(i,jsl,..,sz)
1=

where 0 18 the null set,
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As a model of the controlled system being investigated
we propose to use a fuzzy learning automaton [6]1 , [7]
t.e. a fuzzy automaton for which the membership functions
which are entries of the transition matrixrare modi fied

by a suitable learning operation.

A fuzzy learning automaton is also considered as a
model of the controller. The automaton updates the
entries of the fuzzy mapping "g" each time information
i8 fedback from the controlled system and its model,
see Fig.l.
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MULTIVALUED LOGICS AND FUZZY REASONING
B.R, Gaines

Man-Machine Systems Laboratory,
Department of Electrical Engineering Science,
University of Essex, Colchester, Essex, UK.

1l Shallow and Exact Reasoning

These notes are concerned with recent developments in multivalued
logic, particularly in fuzzy logic and its status as a model for human
linguistic reasoning. This first section discusses the status of formal
logic and the need for logics of approximate reasoning with vague data.

The following sections present a hasic account of fuzzy sets theory; fuzzy
logics; Zadeh's model of linguistic hedges and fuzzy reasoning and finally
a bibliography of all Zadeh's papers and other selected references.

Models of the human reasoning process are clearly very relevant to
artificial intelligence (AI) studies. Broadly there are two types:
psychological models of what people actually do; and formal models of what
logicians and philosophers feel a rational individual would, or should, do.
The main problem with the former is that it is extremely difficult to
monitor thought processes - the behaviorist approach is perhaps reasonable
with rats but a ridiculously inadequate source of data on man - the intro-
spectionist approach is far more successful (e.g. in analysing human chess
strategy) but the data obtained is still incomplete and may not reflect the
actual thought processes involved. :

Formal models of reasoning avoid these psychological problems and
have the attractions of completeness and mathematical rigour, hopefully
proving a normative model for human reasoning. However, despite tremendous
technical advances in recent years that have greatly increased the scope of
formal logic, particularly modal logic (Snyder 1971), the applications of
formal logic to the imprecise situations of real life are very limited.

Some 50 years ago, Bertrand Russell (1923) noted:

"All traditional logic habitually assumes that precise symbols are being
employed. It is therefore not applicable to this terrestrial life but
only to an imagined celestial existence ..... logic takes us nearer to
heaven than other studies™.

The attempts of logicians to rectify this situation and broaden the
scope of logic to cover various real-world problems has been surveyed
recently by Haack (1974), and the role of modern developments in philoso-
phical logic in AI has been excellently presented by McCarthy & Hayes
(1969). These present notes are concerned with an area of massive recent
development not covered by either of these references, that of 'fuzzy logic'
and approximate reasoning initiated by Lofti Zadeh.
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It is no coincidence that Zadeh's previous work had been concerned
with successively improved refinement in the definitions of such terms as
'state' and 'adaptive' in systems engineering. It was dissatisfaction
with the decreasing semantic content of such increasingly refined concepts
that led to his (1972 "Fuzzy languages") remarks that:

"In general, complexity and precision bear an inverse relation to one
another in the sense that, as the complexity of a problem increases, the
possibility of analysing it in precise terms diminishes", "Thus, 'fuzzy
thinking' may not be deplorable, after all, if it makes possible the
solution of problems which are much too complex for precise analysis".

During recent years Zadeh (see bibliography) has developed in
detail a model for approximate reasoning with vague data. Rather than
regard human reasoning processes as themselves "approximating" to some more
refined and exact logical process that could be carried out perfectly with
mathematical precision, he has suggested that the essence and power of
human reasoning is in its capability to grasp and use inexact concepts
directly. He argues that attempts to model, or emulate, it by formal
systems of increasing precision will lead to decreasing validity and
relevance, Most human reasoning is essentially 'shallow' in nature and
does not rely upon long chains of inference unsupported by intermediate
data - it requires, rather than merely allows, redundancy of data and
paths of reasoning - it accepts minor contradictions and contains their
effects so that universal inferences may not be derived from their presence.

The insight that Zadeh's arguments give into the nature of human
thought processes and, in particular, to their support of replication in
the computer, are of major importance to a wide range of theoretical and
applied disciplines - particularly to the role of formalism in the
epistemology of science. The arguments have become associated with 'fuzzy
sets theory'! (Zadeh 1965) and this does indeed provide a mathematical
foundation for the explication of approximate reasoning. However, it is
important to note that Zadeh's analysis of human reasoning processes and
his exposition of fuzzy sets theory are not one and the same - indeed they
are quite distinct developments that must be separated, at least
conceptually, if a full appreciation is to be had of either. As analogies
one may conceive that fuzzy sets are to approximate reasoning what
Lebesgue integration is to probability theory; what matrix algebra is to
linear systems theoryj; or what lattice theory is to a propositional
calculus.

The table below was compiled from an up-to-date bibliography on
fuzzy systems containing some 300 references (Gaines & Kohout 1976) and
demonstrates the growth of such work in recent years:

65 66 67 68 69 70 7L 72 73 T4 75
2 5 4 11 16 17 31 46 58 64 31 (at May 75)

Table of papers on fuzzy systems by year of publication

The relevance of this work to AI is indicated by its many recent applications
to subject areas such as: pattern recognition (Siy & Chen 1974); taxonomic
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clustering (Bezdek 1974); analysis of line drawings (Chang 1971); robot
planning (Goguen 1974, Kling 1973, LeFaivre 1974); medical diagnosis
(Albin 1975); engineering design (Becker 1973); systems modelling
(Fellinger 1974); process control (Mamdani & Assilian 1975); and manage-
ment information systems (Wenstop 1975). The remainder of these notes
are concerned with fuzzy sets theory, fuzzy reasoning, and its relations
to developments in multivalued logics.

2 Fuzzy Sets Theory

Zadeh (1965) first developed the concept of a fuzzy set as an
extension of that of a standard set in which the characteristic function,
A(»), of an element, x, of a set, A, was allowed to take not only the values
0 (not a member) and 1 (a member), but also to range anywhere between these
values - the semantics were to be consistent with the natural order on the
unit interval, e.g. that A(x)=0.6 denotes a greater 'degree of membership'
than does A(x)=0.4., To correspend to the natural concepts of intersection
and union it would be expected that the degrees of membership to fuzzy
subsets, A and B, would not be decreased in their union nor increased in
their intersection, Zadeh postulates that the resultant values are the
lowest and the highest possible, respectively:

c max(A(x) ,B(x)) (1)

Ay B =+ C(x)

]

C=AnB » C(x)=min(A(x),B(x)) (2)

It remains to define the complement of a fuzzy set, and Zadeh postulates
that:

B=A » B(x)= 1-A(x) . : (3)

~ All these definitions reduce to the standard case when the character-
istic function is restricted to its usual binary values. However, it would
be fallacious to assume that the extension outlined is the only one with this
property. For example, whilst the definitions of union and intersection use
naturally defined extreme values, that of negation may seem more arbitrary.
Any antitone mapping of the unit interval into itself that inverted 0 & 1
would also be consistent with both the binary case and the semantics of the
ordering of truth values. For example, an alternative negation, A, might be:

R 1 if A(x)=0
Bz A - B(x) = { ()

0 otherwise

A

This has the property that, in general, A # A, which is desirable in
modelling the intuitionistic propositional calculus (IPC - section 3.1) where
inferences from negative data are disallowed. Zadeh has discussed altern-
atives to definitions (1) through (3), as have many other authors ~ the
particular 'max' and 'min' rules of fuzzy sets theory are not fundamental to
its application to approximate reasoning, However, they are the most widely
used bases for fuzzy logic in the literature.
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Given these basic definitions it is possible to 'fuzzify' any
domain of mathematical reasoning based on set theory by assuming that
variables do not take specific values but instead have a separate 'degree
of membership' to each possible value. That is, instead of having a sharp
value, a variable is fuzzily restricted to a domain of values. The
definition of the 'value' of a function of many variables may now be
extended to fuzzified variables in a natural way - if in the standard case
y=f(x1,%2,.04), and u(xl) is the degree of membership of a particular
fvalue' to x1, then:

MAX (min(u(xl),u(x2),..))
u(y) = X (5)

0, if no x exists

where x=(x1,%2,...,) is any n-tuple such that y=f(xl,x2,...). That is:

with each argument to the function is assoicated a degree of membership that
is the lowest of those of each of its components; and with each value of
the function is associated a degree of membership that is the highest of all
the arguments resulting in that value.

In the same way that probability distributions are normalized to
sum to unity and this is preserved under transformations, there is a natural
normalization of the degrees of membership of a variable that is preserved
under fuzzification. A fuzzy variable is said to be 'normalized' if at
least one value has a degree of membership of unity. It is readily seen
that a function, fuzzified as in equn.(5), of normalized variables is itself
normalized (there must be at least one argument with degree of membershlp 1
and this will give a value with the same membership).

Zadeh's 1965 paper was presented as an extension of set theory and
there has been a great deal of literature concerned with the technicalities
of fuzzifying various mathematical structures, topologies, automata, etc.,
and determining what theorems remain proveable in the essentially generalized
structure, Such work underpins the foundations of any future applications
of fuzzy sets theory and is included in the bibliography. However it is
the semantics of the theory applied to vague reasoning that there is most of
relevance to AT,

3 Fuzzy and Other Multivalued Logics

Any logical structure may be fuzzified by considering propositions
to have degrees of membership to truth values. If we take the conventional
propositional calculus (PC) with truth values O & 1, then after fuzzification
each statement, A, will be represented by a pair of values, (al,a2),
representing its degree of membership to falsity and truth, respectively.
For example, fuzzifying the truth table for implication,D, in PC gives the
following expression:

If C = AdB then (cl,c2)=(min(a2,bl),max(min(al,bl),min(al,b2),min(a2,b2))) (&)
Similar expressions may be derived for fuzzifying the truth tables of

negation,”, disjunction,Vv , conjunction,an, and equivalence,=, but they
are more meaningfully obtained by noting that fuzzification preserves the
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relations giving interdefinability of the connectives of PC, That is, if
F is any false proposition (i.e. (f1,f2)=(1,0)), then we may write:

~ A for ADF (7)
A VB for ~ADB (8)
AAB for ~ (vAv~B) (9)
A= B for (A2 B)A(BD A) , (10)

Equn.(7), for example, when substituted in (6) gives us:
If B =+vA then (bl,b2)=(a2,al) (11)
and, similarly, expressions may be derived for the other connectives.

If we assume the fuzzy variables are normalized then, as there is

only one non-zero component, there is a 1-1 correspondence with the unit
interval that simplifies the above expressions. Let:

a = (l-al+a?2)/2 (12)

and so on for the other variables (this transformation can be inverted given
that one of al and a2 must be 1), Then the equations for the logic
operations become:

C=zADB - ¢ = max(l-a, b) (13)
B =~A - b = 1l-a (14)
C=AVDB - c = max{a,b) (15)
C=AAB = c= min(a;b) (16)
C=zAz=DB -> ¢ = min{max(li-a,b),max(1-b,a)) S (17)

This set of simpler equations is what a number of authors have proposed

as a 'fuzzy logic' (e.g. Lee 1972), probably not deriving them as a
fuzzification of PC but instead as a direct set-theoretic interpretation of
a logic based on equns.(l) through (3). The relation between equns.(3) &
(14) is particularly interesting since fuzzification does not involve the
complement operation, and hence the coincidence of definitions shows that
Zadeh's definition of a fuzzy complement is a natural one for PC.

3.1 Relationship to VSS and Godel & Lukasiewicz Logics

Equns. (15) & (16) are valid for the disjunction and conjunction
connectives of a wide range of multivalued logics (Rescher 1969), and it is
interesting to examine the relationship of the system of equns.(13) through
(17) to such logics, It turns out to be identical to the infinitely wvalued
version of the 'variant-standard sequence' (VSS) investigated by Dienes
(Rescher 1969 p.43) - i.e. VSS is exactly the fuzzification of PC. This
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logic has a defect in its semantics of inference, as noted by Lee (1972),
that the assertion that A implies B (with value 1) does not necessitate that
bza, the truth value of B is greater than or equal to that of A. This

seems a natural requirement in terms of our interpretation of the natural

" ordering of 'degrees of membership', and is implicitly assumed in most
practical applications of fuzzy logic (e.g. Mamdani & Assilian 1975). It
enables the assertion of a rule of the form, AB, to be interpreted that B
has a truth value in a particular instance at least equal to that of A, and
hence greater than or equal to the maximum of any Al, A2, etc., that imply B.

If we require that the truth value of ASB is 1 when b2a then this
may be used to define a variant of VSS based on some subset of definitions
(9) through (17). To complete the definition of implication we must define
the truth value of A>B when b<a. Two possible definitions are:

b otherwise (18)

il

C=A>B ~» ¢ =1 if bza, ¢

l-atb otherwise (19)

1]

C=A»B -» ¢ = 1 if bza, c

so that, when the implication is not absolute, the truth value is that of the
implied proposition (equn. 18), or (equn. 19) it is a function of the
difference between the two. If we couple each of these definitions with (7)
for negation, (10) for equivalence, (15) for disjunction, and (16) for
conjunction, we get two important systems: equn.(18) gives Godel's infinitely
valued logic (Rescher 1969 p.u45) which has a negation similar in form to the
complement of equn.(4) and is closely related to the intuitionistic
propositional calculus; equn. (19) gives Lukasiewicz's infinitely valued logic
(Rescher 1969 p.37) which is the one used by Zadeh for statements 1nvolv1ng
truth and falsity in linguistic reasoning.

3.2 Relationship to Probability Logic

Other multivalued logics, some with connectives other than those of
equns.(15) & (16) for disjunction and conjunction, may be derived from other
subsets of these definitions - only the semantics of particular classes of
situation can determine whether one system is more appropriate than another.
The only other one to which I shall draw attention is that of 'probability
logic' (PL). Rescher (1969) shows that the standard axioms for unconditional
probability may be regarded as defining a logic which is closely related to
the modal logic S5. PL is not truth-functional in that the truth value of a
proposition is not uniquely defined by those of its components. Gaines (1975
"Stochastic ...") has shown that PL may be made truth functional in two
distinct ways: (a) By assuming statistical independence between atomic
components, a common assumption in systems engineering; (b) By assuming that
of any two atomic components one must imply the other, giving a fuzzy logic
satisfying equns.(15) & (16).

The equivalents of equns.(15) & (16) for a PL with assumed statistical
independence are:

1

C z=AvB = ¢ = atb-ab ‘ (20)

AaB + ¢ = ab (21)

(@]
1
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Gaines (1875 "Stochastic ...") has re-analysed Mamdani & Assilian's (1975)
data on experiments with a fuzzy logic linguistic controller using this
form of connective and shown that it makes no difference to the results -
the 'fuzzy reasoning used is robust to changes in the form of 'fuzzy logic!
on which it is based (more information on this controller is given in my
notes on "Control Englneerlng & AI").

Giles (1975) has given a model for various forms of multivalued and
probability logics as a dialogue between two participants, in essence a game-
theoretic semantics. Gaines (1875 "Fuzzy ...") has given an alternative
model that alsoc encompasses both probability and fuzzy logics in terms of
the responses of a population (e.g. people or neurons). Atomic propositions
are modelled as questions to which each member of the population makes a
binary, yes/no, response - the truth value of a proposition is the proportion
of 'yes' responses, and that of compound propositions is determined by
counting those who say yes to both A & B for terms of the form, AAB, and so
on for more complex compounds. This is essentially a set-theoretic model of
a general logic and different specialized forms may be obtained by adding
further constraints to it:

(i) If we assume that a ‘'yes' to A implies a 'no' to “A then we obtain
Rescher's probability logic;

(ii) If further we assume that the responses are independently distributed
in the population we cbtain what Gaines (1975) terms a 'stochastic logic'
satisfying equns.(20) & (21);

(iii) If we assume instead that members of the populatlon each evaluate any
questions according to the same criteria but each require a different,
individual 'weight of evidence' to reply ‘'yes', then we obtain a fuzzy logic
satisfying equns.(15) & (16).

This last assumption, so different from the conventional one of
statistical independence, also has its intuitive attractions. Reason (1969)
has shown that the threshold applied by people in coming to a binary decision
on an essentially analog psychophysical variable seems to be associated with
personality factors and is characteristic of the individual. If so, human
populations would tend to show a more fuzzy than stochastic logic in their
overall decision making., Similarly the concept of uniformity in information-
processing but varying thresholds of sensitivity is a reasonable one for
populations of cells. Note that both the Giles and Gaines models give the
pure forms of the logics as extreme cases - the most reasonable general
assumption is a mixed form of probability/fuzzy logic.

Thus developments in 'fuzzy logic' and 'fuzzy reasoning' may be
related both to classical multivalued logics and to classical probability
theory. One suspects that there must be some underlying unifying structure
that would form a better basis for modelling human reasoning than any of
these particular logics alone - certainly no one of them has a claim at
present to be the one correct logic for reascning under uncertainty.

4 Linguistic Variables, Hedges and Fuzzy Reasoning

Whilst the technical aspects of both fuzzy sets and fuzzy logics
have attracted much attention and are fascinating and significant in their
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own right, it is in their application to linguistics and approximate
reasoning that their practical importance lies. It is not possible to do
justice in these notes to Zadeh's prodigious output and detailed arguments,
or to the application studies of recent years. The following extracts
are intended to give a feel for the approach and motivate further reading
of the literature in the bibliography. A good general introduction is
given in Zadeh (1973 "Outline of ..."); Lakoff (1973) gives a linguistic
introduction; Goguen (1974) is more technical but relates categories and
concepts; Kling (1973) and Lefaivre (13974) have developed a version of
planner capable of fuzzy reasoning; Albin (1975) and Wenstop (1975) have
used models of fuzzy reasoning in studies of medical diagnosis and
management information systems, respectively; and so on - the subject area
now has a high semantic content in addition to its technical attractioms.,

Three illustrations will serve to define the type of problem with
which Zadeh is concerned:

(1) Reasoning with 'linguistic variables' such as: "young", "middle-aged",
"tall", or "rich", rather than precise quantities such as: "12 years old",
"45 years old", "6 feet tall", or "having $1M";

(2) The effect of general linguistic 'hedges' upon such variables, e.g.
'very small", "more or less tall", "fairly rich", etc., which allow a single
concept to be extended in a standard way to cover many more situations;

(3) Syllogisms for approximate reasoning with linguistie variables, e.g.
"John is very old - Charlie is about the same age as John - so Charlie is
old".

Zadeh represents the meaning of a linguistic variable as a
'compatibility function' or 'fuzzy restriction' assigning a degree of
membership to each possible value of the variable. For example, "older"
might correspond to degrees of membership commencing at O for age 0 and
increasing very slowly to 0.1 at age 25, to 0.3 at age 40, and then more
rapidly to 0.9 at age 65, and then more slowly, asymptotic to unity. The
numerical forms of such functions do not matter a great deal since it is
the order relations that play most part in the later development.  MacVicar-
Whelan (1974) has performed some psychological experiments on their form
and Lakoff (1973) reports similar experiments. Individuals do find it
natural to assign such numerical values to the degree of compatibility of a
particular value with a concept. Alternmatively one may think of a popul-
ation model in which the compatibility is measured in terms of the proportion
of people who say, ''yes,a young man may be 25 years old". Many models are
possible and it is useful to have one in mind, but again much of the
development of a theory of linguistic reasoning is independent of the exact
model.,

Zadeh has given a detailed account of how, given the compatibility
function for a single linguistic variable such as '"young", the compatibility
functions may be calculated for the same variable subject teo linguistic
hedges, "not very young", "more or less young", etc. He shows how complex
hedges may be decoded by a standard syntax into a number of elementary
operations on compatibility functions and gives approximate forms of such
operations as arithmetic operators, These definitions give a superficial
appearance of mathematical precision to the effect of hedges. However
Zadeh introduces the notion of 'linguistic approximations' in which
compatibility functions resulting from a process of fuzzy reasoning are
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described by the closest reasonably simply-hedged linguistic variable.
This process means that the reasoning itself is essentially approximate,
'shallow reascning' that loses information at each stage,and may therefore
consist only of comparatively short chains.

As noted in Section 3, the logic which Zadeh chooses to fuzzify
for linguistic statements involving truth or falsity is one of Lukasiewicz's
multivalued logics with connectives defined by equns.(10), (14), (15), (16)
& (19). Hence the form of implication used is not that of PC which, when
fuzzified, gives counter-intuitive results., This is not really surprising
in that there are philosophical objections to the implication of PC as an
explication of "if ... then" in ordinary language. Lukasiewicz originally
developed his logic in 3-valued form to allow for the status of future
contingent propositions, and later extended it to have the semantics of a
"modal" logic. '

5 Conclusions and Background References

The classical formal logics such as PC may be seen as expressing
idealized, precise 'reasoning', such as that of the digital computer at a
hardware logic level, Al research may be seen as an attempt to replicate
the less formal linguistic reasoning with vague and imprecise rules and
data, actually adopted by human beings. This is not in itself a new
problem - in "A System of Logic" published in 1843, John Stuart Mill commences
with the remark:

"Since reasoning, or inference, the principal subject of logic, is an
operation which usually takes place by means of words, and in complicated
cases can take place in no other way: those who have not a thorough insight
into both the signification and purpose of words, will be under chances,
amounting almost to certainty, of reasoning or inferring incorrectly".

{The rest of this fascinating book is also worth reading - there are few
problems of knowledge and its acquisition about which Mill has no perceptive
comments - it is a pity that he did not have access to a PDP10 !). He
criticizes the weakness of formal logic in explicating linguistic reasoning
but, like most work since, attempts to bridge the gap linguistically rather
than develop a new basis in logic. Zadeh's use of fuzzy logic to model
natural linguistic reasoning may be viewed as a more direct response to
Mill's argument above some 130 years later,

Apart from papers so far reference, I would recommend anyone
interested in this area to have at hand: Rescher's (1969) book on multi-
valued logics; Snyder's (1971) book on modal logics as an introduction and
Hughes & Creswell (1968) as a reference; Creswell's (1973) book on logic
and language as an alternative modern approach to linguistic semantics;
Fillmore & Langendoen (1971) and Hockney et al (1975) as basic references
on the same; and Krantz et al (1971) for alternative approaches to partially
qualitative description. McCarthy & Hayes (13969) is well worth reading
first, followed by Lakoff (1973) and any (or all !) the Zadeh references.

Having quoted so many eminent authorities I may as well end with a
quote from the most venerable of them all - Lazarus Long, the senior, was
over 1,000 years old when he wrote:
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"The difference between science and the fuzzy subjects is that science
requires reasoning, whilst those other subjects merely require scholarship"
(R, Heinlein, "Time Enough for Love', NEL 1974),

Hopefully the direction of the work described in these notes indicates
that the scholarship of multivalued logic has a part to play in the science
of reasoning about (rather fuzzy) human linguistic behaviounr!
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WHY FUZZY REASONING ¥

B.R., Gaines

Man Machine Systems Laboratory, University of Essex, Colchester, U.K.

1 Background

The topics of "fuzzy logic! and "fuzzy reasoning" are not clear-cut
subject areas with well-defined results and track records. Instead they
represent a wealth of recent activity on an international front that may be
seen to have its technical roots in philosophical and mathematical studies
of "multi-valued logics" (Rescher 1963) and "vague reasoning"” (Machina
1974), but which owes much of its present impetus to engineering interest
from those concerned with "information systems" (see Sanford 1975 for some

wry comments on this "engineering interest" in a philosophical journal).

Much of the current literature on fuzzy logic is neither precise in
its objectives nor accurate in its conclusions. Much of the current effort
duplicates activities taking place, or having taken place, elsewhere.
However, this is of the nature of a fast growing subject area - it makes it
difficult, however, for the newcomer to assimilate the (literally hundreds)
of papers of recent years and assess the results, neither dismissing them
because of his contact with the trivial, nor believing the exaggerated

claims of enthusiasts.

This seminar is intended to introduce this area, relate it to other
subject areas concerned with reasoning and decision-making, and give pointers

to the most useful literature and areas of development.

These notes are complementary to those on "Multi-Valued Logic and
Fuzzy Reasoning'" for the AISB Summer School (Gaines 1975), which gives a
technical summary and literature references. I will only emphasize again
that it is worthwhile commencing with Zadeh's papers and the more
"philosophical"™ and "linguistic" literature that emphasizes the motivation
‘behind the study of fuzzy reasoning rather than the more technical aspects

of Y"fuzzy logic®.
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2  Basic Problems of Knowledge and Prediction

Because of the fuzzy nature of the subject area I feel one should go
back to some fundamental considerations. These have massive and ancient
philosophical roots. However, they are also of direct practical relevance =
whenever we attempt to implement, for example, a management information
system that does more than store and reproduce the data fed to it, to make
inferences or estimate trends, we are involved in<basicvprob1ems of
knowledge whose "solution" entails assumptions - if we become concerned with
the nature and reasonableness of these assumptions then we very rapidly come
to face problems that have been the subject of philosophical debate for all

recorded time.

However, our own attitudes to these problems have probably been
formed in the light of the past century of the growth of science and the
success of technology based on it. This places great emphasis on precise
physical laws framed in terms of reiations between numeric quantities. It
has little use for human opinion and belief, and its development through
verbal qualitative reasoning. Thus, when faced with problems of aiding the
manager in decision-making we automatically fall back on probability theory
based on measure theory and the observation of frequencies. This is not
necessarily a natural tool in which to formulate the decision processes used
by human beings. Work on fuzzy reasoning is best seen as stimulated by the
quest for more natural tools in which to develop information systems that

interface naturally with the human reasoning process.

2.1 Induction and Prediction

The purpose of reasoning is to draw inferences from established
premises. It used to be thought meaningful to make a clear distinction
between deductive reasoning in which the conclusions were logically
derivable from the premises (and hence had no more content than them, were
in essence a re-formulation), and inductive reasoning in which the
conclusions involved an alogical inductive "leap' or generalization - the
former was mathematically rigorous and the latter metaphysically dubious.
This distinction attained its strongest form with Hume's (Popper 1972)
(irrefutable) proof that the process of inductive reasoning cannot itself

be proven valid.

This result may be seen as undermining any possible foundations of
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"science", and has naturally generated an immense effort among philosophers
of science (such as Carnap (Carnap and Jeffrey 1971), Popper (1972),

Lakatos (Lakatos and Musgrave 1970), Feyerabend (1975), Hesse (13974) and
Gellner (1974)) to determine what are the foundations of science and to

give them whatever lesser rigour Hume's result still permits. The relevant
literature on the problem of induction (Katz 1962), confirmation theory
{Swinburne 1973, Rescher 1973) and scientific inference (Hesse 1974) is
important to anyone developping information systems. However, they will
be disappointed at the strength of the negative results and the paucity of
positive methodology.

More recently doubt has been thrown on the strength of deductive
inference (Dummett 1973). Firstly, the whole concept of an established
premise is extremely dubious. Even "raw observation" seems always to
entail inductive reasoning - we cannot perceive or measure without
unverifiable assumptions. Secondly, the uniqueness and absoluteness of
classical logics (propositional and predicate calculi) has been increasingly
challenged with increasing success (Haack 1974). In recent years the
rigorous development of modal logics (Snyder 1971}, the weakness of the
classical logical foundations of quantum physics (Mehra 1973), the success
of alternative logical calcull as foundations of mathematics (Mostowski
1966), and, probably also, the obvious poverty and weakness of our whole
knowledge of knowledge, its acquisition and use, as demonstrated by the
attempts to use it operationally in artificial intelligence systems - all

have weakened the position of classical deductive reasoning.

3 Human Reasoning

Once we realize that any form of predictive inference involves
alogical and unverifiable assumptions, that all premises have inherent
vagueness if not some element of falsity, and that our process of reasoning,
having papered over these basic flaws, is itself somewhat arbitrary, we
must begin to wonder how anything is possible (or decide that in fact any-
thing is possible -~ a perfectly tenable position if somewhat devastating

for systems engineering!).

One natural way out is a form of pragmatism - "valid reasoning is
what works". This is the argument that Hume proved circular - however, as

Katz (1962) has argued, there is a difference between (logical) validation
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and (pragmatic) vindication. We may, for example, give various evolutionary
arguments as to why creatures with brains whose reasoning is like our own
have survived in this physical enviromment (what we cannot justify is the
supposition that they will continue to do so - however, it seems reasonable
to act as if this were so - at the utmost level of despair permitted to a
working engineer one may operate under the motto of William the Silent,

"It is not necessary to hope in order to act, or to succeed in order to

persevere" !).

In the light of these strong undercurrents mining away the philo-
sophical and methodological foundations of science, it is not surprising
that one of the main pragmatic models of successful reasoning that is being
examined is man himself, The last hundred years of scientific and
commercial success of physical and mechanist science gave great hopes that
such science would lead to a complete account of biological processes,
including all aspects of the human brain and its reasoning capabilities.
One would not look to the human mind as a model of inference processes -
the precision and exactness of formal logical deduction are foreign to the
forgetful, inexact, wandering human mind. Perhaps, conversely, creative
and original thought was foreign to the precision of the digital computer,
but the judicious introduction of "noise" might achieve it without

necessarily introducing the basic weaknesses of the brain.

We would not nowadays wish to return to a position where the brain
was regarded as having a vitalist component beyond our knowledge, nor the
computer regarded as pre-programmed in every respect and thus incapable of
the emulation of "creativity". We are making too much progress in under-
standing, emulating and collaborating with human reasoning to feel the need
to invoke magic, and no-one who has retrieved interactively from a natural
language data base system which has also interacted with other users (and
contains data resulting from those interactions) could deny the creativity
of some computer systems (constructive novelty is essentially always
relative to the percipient - we are the ones who recognize innovation and

what it is reflects upon both observer and observed).

However, there is an increasingly healthy respect for human reasoning
that begins to recognize the problems of inferencing from unreliable, incon-

sistent and vague premises to conclusions that form the basis for action.
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Perhaps forgetting, inexactness, and search for analogies, are not defects

of a weak deductive system but instead essential features of a powerful
inductive system (those who see this as the obvious position anyway should
introspect a little more deeply and ask even if they believe it superficially
do they actually act on it in systems engineering - we have been indoctrin-
ated to believe in the superiority of numbers and exact operations to names
and qualitative operations - this affects many design decisions -~ for
example, we generally require far more precision of expression by the
computer user than is necessary - we are surprised that alphabetic names

can just as well be entered on a 1l0-key telephone dialler (with 2.6 to 1
vagueness) as on a teleprinter - we trust numerical approximations to reality

and our manipulations of them far more than any direct verbal logic).

An interest in human (verbal) reasoning processes is not new - Plato
and Aristotle had a lot to say that is still very fresh today. The modal
logicians studying our use of terms such as "possible" and "necessary"
(Snyder 1971), "sometimes" and "always" (Prior 1967), "a few" and "many"
(Altham 1971), and so on have essentially modelled the reasoning processes
of which these terms are major components. Both modal logic and
linguistics have made great progress in this direction in recent years
(Creswell 1973, Fillmore and Langendoen 1971, Hockney, Harper and Freed
1375). The technical development of fuzzy logic and fuzzy reasoning may
be seen as providing enhanced mathematical tools for the study and emulation
of human verbal reasoning, logics which carry both factual information are
estimates of its reliability. Probably more important than any single
technical development however is'the motivation behind the surge of
engineering interest in such logics - it has brought together many workers
on &iverse forms of information systems in the common realization that there
are substantial gaps in our knowledge of knowledge that are being filled ad
hoc in many practical systems and which need, and can sustain, far greater

coherent development.
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RESEARCH NOTES ON FUZZY REASONING
B.R.Gaines

(1) [Fuzzy Logic and Fuzzy Reasoning

There appears to be an important gap between the so-called "fuzzy
logics" studied by many authors (e.g. Lee 1972 - JACM, Bellman and Giertz
1973, Inf. Sc.) and the "fuzzy reasoning" developed by Zadeh (Berkeley
reports) which is not noted in the literature, The standard "fuzzy logic"
is just a multi-valued logic of the family described by Rescher (1969 book).
Most authors probably regard it as conjunction/disjunction/negation derived
from fuzzy set membership considerations completely analogous to the
derivation of Boolean algebra from classical set theory. Five points seem

to have been missed:

(1.1) The definition of implication is open - it is not determined by the

other connectives. For example, the natural definition of negation in

terms of implication:
Def. A : ADF

gives "fuzzy negation” (u(Z) = 1-u(A)) for both VSS implication
(u(A>B)
~(u(A>B)

H

max(1l-u(A), u(B))) and Lukasiewicz implication
min(l, 1-u(A)+u(B)).

H

Question 1 How many of Rescher's (see also Rosser and Turquette et al)
logics have (or, if non-truth-functional, can be restricted to have) the

fuzzy logic basic connectives ?
Question 2 What is the status of fuzzy negation, e.g. c.f., G8del negation ?

(1.2) Some authors do not even consider implication ~ Lee assumes the PC

definition:
Def., AB : AVB

without making this explicit. This then leads to the semantic inconsistency
he notes for the relative magnitudes of the terms, but he does not follow
this up to conclude that his definition is wrong, presumably because he does

not realize he has one.

Question 3 What are the minimal semantic constraints upon the implication

connective (see Carnap et al on confirmation theory) ?

(1.3) The "fuzzy logic" generally considered may be derived as the

fuzzification of PC. This does not seem to have been stated explicitly

but is probably folk lore. Such a derivation is more in the spirit of the

general application of fuzzification to other mathematical structures.
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(1.4) Fuzzified PC is precisely the variant standard system (VSS) described
by Rescher (attributed to ?).

Question 4 Can other MV logics be derived as fuzzifications - e.g.
Lukasiewicz and Godel (I doubt it: if not there may be some relationship

to Dugundji's results on finite matrices) ?

(1.5) Zadeh himself does not seem to have put forward fuzzified PC (or
rejected it because of the weakness of its implication connective ?).  Fuzzy
reasoning is primarily concerned with statements about fuzzy attributes -

one possible attribute is é truth value. When Zadeh considers the truth

value attribute he fuzzifies Lukasiewicz MV logic not PC.

Question 5 Why choose Lukasiewicz logic (Zadeh does not seem to give a

justification) ?

(2) Fuzzified Lukasiewicz Logic (LL)

The similarity between the fuzzy set operations on degrees of
membership and the LL basic connectives needs investigation (Quest. 4 and 5).
There are semantic constraints upon the form of function that maps degree
of membership onto truth value. These constraints should be made explicit.
The logic without the constraints offers an apparent freedom that should be

removed ~ this will itself lead to a different formulation.

Question 6 Given a family of functions on the unit interval (truth value -
membership) and the operations of fuzzy sets theory and LL (or various sub-
sets) what is the space of functions generated (and the converse of deriving

a basis for a given space given the operations) ?

Question 7 What are the semantic constraints upon a basis ?

(3) Interaction of Truth Values with Fuzzy Statements

We may apply (essentially metalinguistic ?) statements about fuzzy
truth values to statements about fuzzy attributes and there is the possibility
of interplay between them. For example, what is the relationship between
'John is tall is very true' and 'John is very tall is true', or 'Mary is fat
is more or less true' and 'Mary is more or less fat', There is scope for

interplay but no obvious rule. Notes:

(3.1) One must beware of unnatural examples and watch for the possibility
of multiple interpretations - e.g. it does not seem to be meaningful to

consider statements such as 'John is tall is .7 true', and 'John is tall is
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very true' could mean that he is so tall no one could disagree (in which
case 'very tall' assumes a higher truth value) or that he is precisely tall,
neither 'more or less tall', nor 'very tall' (in which case 'very tall'

will assume a lower truth value).

(3.2) Ambiguities can only be resolved by accepting that the role of
language is communication and that the same statement may have entirely
different meanings for different recipients. The use of this feature of

language is itself a major linguistic skill (essential to politicians).

(3.3) Our usage of words such as *truth' and 'false' may be more related to
'reasonableness' and 'unreasonableness' than logical truth, i.e. a statement
is very true because it is a reasonable way of expressing something that
will create a very true impression of the state of affairs in the mind of
the recipient. Thus 'John is tall is very true' would mean that it is the
most reasonable statement to make about John's height. If he turns out to
be 7 foot tall, you say 'but he is extremely tall, very very tall' and feel
that you have been misled, i.e. 'John is tall' is 'not very true', but

'John is extremely tall' is very true.

This model of our use of the linguistic terms true and false in the
metalinguistic context (i.e. about other statements) as relating to the
communication of a true impression is a useful one, probably widely valid.
It resolves the conflict between a direct interpretation of degrees of
membership as degrees of truth - where 'John is very tall' makes 'John is
tall' very true - and what seems to be the more conventional use of state~
ments about truth and falsity in colloquial language. It also emphasizes
that the analysis of linguistic interactions must be in a context of inter-

personal communication, not isolated fragments.

(3.4) The use of linguistic hedges is not only to modify meaning but also
to convey the level of precision. '‘John is tall', 'John is more or less
tall', 'John is pretty well tall', 'I think it is very true to say that John
is tall', all convey the same expectation of height but varying degrees of
possible spread about it. This is why a single truth value cannot express

the full semantics of a vague statement.

(4) Linguistic Approximation Stable Fuzzy Arguments

Zadeh's concept of linguistic approximation (LA) introduces an

element of discontinuity into the fuzzy reasoning process. LA arises

basically because the numerical manipulations of fuzzy predicates corresponding
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to linguistic hedges and logical operations can generate a result that
cannot be represented exactly as a simply hedged linguistic truth-value -

it can only be approximated by one., The effect is similar to that of

quantization in analog-digital conversion and generates similar problems,

i.e. it cannot be treated effectively as "noise", introduces its own

coloration, and gives rise to new phenomena such as limit cycles.

The importance of linguistic approximation to a theory of fuzazy
reasoning seems to have been missed despite the emphasis Zadeh places upon
it. Without it any form of fuzzy logic is a variant of some formal multi-
valued logic and (whilst again the fact that Zadeh uses a fuzzified
Lukasiewicz logic rather than fuzzified PC seems to have been little-noted)
it is presumably open to axiomatization and probably to reduction to some

known structure.

With LA fuzzy logic has new properties, for example that a long
chain of reasoning that is logically equivalent to a shorter chain will

produce less sharp results in general.
Several questions are apparent:

Q&estion 8 What class of operation on fuzzy variables leads to a finite

set of values ? - a purely technical point reducing the need for LA.
Question 9 Does LA account for the weakness in long chains of reasoning ?

We may introduce the concept of a stable fuzzy argument which is
such that if LA is applied at all or amy points in the chain of reasoning
the LA to the final result is unchanged. This introduces the concept of

a linguistic confluence set - the set of all possible results of a chain of

fuzzy reasoning when LA is applied in all possible ways.

The following results are obvious: (a) the longer the chain of
argument the less stable it will be; (b) the greater the range of LA's
available the more stable it will be - this corresponds to the eskimos 40
names for ice, the skilled practitioner's use of longer chains of argument,

etc.

LA introduces tolerance relations on the space of functions over an
interval. Can we take the logic and tolerance relation and treat it as a

new logic ?
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(5) Fuzzified Definitions of System Concepts

It should be possible to re-develop such concepts as stability,
adaptivity and state within a framework of fuzzy reasoning. Some of the
arbitrariness in current definitions should be absorbed into the fuzziness
rather than left as firm but undefined decisions. The semantic constraints
that mean that decisions are not completely arbitrary will appear as the

order relations on fuzay values,

(8) The Role of the Numbers

How much of the theory of fuzzy reasoning can be developed in
terms of order relations on degrees of membership rather than truth values.
I doubt that this has been studied in the light of Zadeh's semantics for
fuzzy reasoning, e.g. with fuzzified LL.

Linguistic Approximation in an order structure would give a tolerance
leading to a non-truth-functional logic. This seems a very natural

structure that is worth developing.

These notes were based on discussions with Lotfi Zadeh at
Berkeley in May 1975.
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Summary

In mén& casés a human operator is far more succesful
at contrdiling a compléx industrial process'than any
{ - - controllef derived using;modérn control techniques.
The method of expresszng the strategy of a human ope—
i; . _ ' rator using fuzzy set theory has been proposed else-

where. In this study this method is applied to the control

" of a warm water plant. Fuzzy algorlthms based on lin-
guistic rules descrlbzng the operator s control strategyA
-are constructed to control this plant. Several types of

"+ such algorithms are implemented and com,ared w1th each

‘other, in behaviour as well as in structure.
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3 Introduction

fuzzy set theory is a theory about vagueness, uncertainty

enébling one to use nonprecise, ill~defined concepts and
yet work with them in a mathematically stric; sense'[ll.
Automatic Control theory has developed in the last decades
from an emperically oriented technique into a strongly |
mathematically orientated rigid technique, requiring pre-
c¢ision, well defined concepts and exact data,'Nevertheless
vaguéness and subjectivity still play a role aé is pointed

out fur£her below.

vThe introduction of the stability investigation approach by

A means of-fréquency diagrams ( Nyquist, Nichols, Bode‘)
. created an exact method, the design criteria however

remain végue and subjective. No definitive answer can be.

giveh(és to what gain and phasé margin, maximum relative E
‘error etc. have to be chosen to achieve a "good" system

performanée. The big spfead of these criteria to be found withf

se§eral authors, dependant on their personal views and

experience is thus not surprising{ Hence the introauCtion
‘of different criteria like that of Ziegler andANichois. The

root locus method of Evans suffers from this same‘ambiguity
~as no exact values for the damping factors exist. The intro- |
duction of the integral error criteria was a step forwards
in the exact determination of the optimal system, but in
fact the vagueness here has been shifted to the choice of

a particular criterion; The use of more complex pefformance

criteria enables the incorporation of several desired

factors in the optimisation. The decision as to which
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factors have to be accounted for and to what extent, is
still subjective. Thus, notwithstanding the creation of
numerous wathematical control techniques, the final deci-
sion ebout the "goodness" of a system's behaviour remains
é personal, subjective task. Under the surface of modern
control techniques subjectivity, vagueness - perhabs
unconscioﬁsly ~ still does play a rdie. .Furthermore,
in non-engeneering systems, the so-called "soft.systems"
subjective matters are almést predominant. A theory of

vagueness would be very useful here, to put it mildly['2].

Apart from this kind of general rationale éf tbe incorééxa
tion of vagueness in éystem's désign, there is a muéh more
pfactical reason for .the particular kind of fuzzy control
system used in this research. Compléx industriél plants
such as chemeical reaction processes often are difficult

to control automatically. In some cases plant models can be

_‘derived from the underlying physical or chemical proper-—

ties of the process, but it is well known that this re- .
guires very complicated calculations, and that even under

various approximations the final model often is very

difficult, of high order, non-linear, time vatying etc.

The method of parameter estimation to obtain a purely
mathematically described behavioristic model may also
require a very elaborate computation. When nonlineérity,
time variance and stochastic disturbances have an impcr—.
tant effect, modelling methods become still more compli-
cated. Contrql theory however relies on modelling as an

important step in the design process-.
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However it is interesting to note that in many cases the
cohtrol of a process by a human operator is far more succes-
fui than any such automatic control. Hence it seems use-
ful to investigate the éontrcl policy of the operator. As
the strategy he uses is vague and qualitatively described,
the use of fuzzy set theory in sﬁch an inveséigation is

'self evident. This was also the rationale behind the "fuzzy

logic controller" recently reported by Mamdani and Assilian[ﬁS},

In what waé the first real céntrol application of fuzzy set
theory, they achleved a succesful control of a small

bo;ler-steam englne combination, better even than a conven-
tional DDC controller. The present work follows the same |

idea of using fuzzy rules as a control algorithm.

‘A warm water plant which had difficult control properties
;such as nonlinearity and varzablllty, has been controlled
- by a fuzzy algorithm based on the experience of a human
'operator. From a set of linguistic rules which describe the
Operator‘é control strategy a control élgorithm is constructed
where fuzzy sets ..define the ﬁo:ds used. Several types of such
bzﬁ'; algorithm are implemented and compared ﬁith each other,

in behaviour as well as in structure. An altepnative algo;
rithm - mathematically equivalent to the other - is proposed

to speed up the computation [4].

3
13
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2 The Fuzzy Linguistic Control

The development of the theory of fuzzy sets and algorithms {ES]
makes'it possible to build a control algorithm based on a very
common kind of inexact information, namely information expressed
in natural language. This‘linguistic infoxmation.may be obtained
from an experienced human process operator. This is done by
demanding a qualitative description in his own words of the
control'strategy he uses and ho& he reacts iﬁ a situation. Thus
_the operétor may be able to expreés his cdntroi‘strategy'as a |

" set of linguistiec decision rules of the form:

3f "increase in temperature is big" then "decrease pressure
- a lot" , else, if "increase in temperature is low" then

"decrease pressure a little" , else, etc.

Clearly such éxpreséions can. be descriﬁed as fﬁzzy sets on the
universes of discourse "incréase in température” and "decrease

of pressure", respectively. Thus by defining the appropriate
fuzzy sets and translating the rules as fuzzy implications of

the form: if A then B, as functions of those fﬁzzy sets {( A and
B.), the human control strategy can be converted iﬁto a control
aléorithm and implemented on a computer as ouﬁlined below. ( In
the appendix the precise mathematical derivation of the fﬁzzy
control algorithm is presented. Here a less formal outline 6f‘the

method will be given.)
Basic to the whole approach is the fuzzy implication ( rule )

if A then B
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where A and B are fuzzy sets, like "high temperaturé", "small
pressure", on the universes of discourse input and output res-
pectively. Considering this rule as a kind of equivalent of a
system mapping the next question is: what will the output be to
a certain input A' ? In other words, given the rule: if A then
B,Aénd the input A', what will Be the output B' ? An expression
for this is derived using the compositional rule of inference

[S]in the appendix.

- The next stage is the observation that the control algorithm
‘clearly is composed of several rules} in different situations the
human operator will'apply different actions. The algorithm will

-

'~have a form like
if‘Al the By elsg , if A2 then 32_' alse RERE

'This set of xﬁles will be evaluated by identiffing‘the "else”
connective as the unidn operétor between fuzzy sets. The rules can
be évaluated seperately and the results are combined using the

max operator. Thus given a certain input A’ resulting in an

Qutput of the first rule: Bi , of the second rule:vBé ' etc.,fA
the resulting overall fuzzy 6utput B' will be:

. - . J Ps . . P
B'#max (Bi,Bé, CRC IR A Y )

The extension of this singleQinput~single~output type to a more
complex form of system having e.g. two inputs and one output

with rules like

if A then ( if B then C )
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is a straightforward one. The same approach still applies ( see

appendix ).

In tﬁe particular kind of application of this system concept
to a process controller the input to the controller -~ temperature
error - and the output of the controller - process input: flow -
were both non fuzzy, deterministic values. The approach to cope
with a non fuzzy input is explainediin the appendix in two

different ways and is quite straigtforward. The result of evalu-

'atinthhe fuzzy algorithm for a particular deterministic input

is still a fuzzy output set ranging over £he wholé possible set

of outputs. In order to obtain one deterministic output value

. from this fuzzy output set & decision procedure has to be adop-

vte& to make a choice as to which particular ( non fuzzy ) value

is a goéd representative of the fuzzy set. The decision proce-~
dure applied here is to take that output value at which the

membership function is maximal ( see appendix ). .

The Process

This fuzzy system concept has been applied to design a control-

ler for the temperature of a warm water plant, built on a labo-

ratory scale. Figure 1 shows a schematic diagram of'the plant.
the warm water tank is divided into several compartments. The
cold water stream enters the tank with a variable flow F2, passes
the compartments in sequence and leaves the tank in the last
compartment. This water is heated by a heat exchange unit in
which hot water ( at about 90° centigrade ) flows with a variable
flow F1., The aim is to control the temperadature of the water in

one of the compartments for different temperatures and steady



s é/s%
state values of the flow F2 by adjusting the dynamic values
of Fl1 and F2. 1In this application the temperature of the water
leaving the heafing compartment has been controlled to mini-~
mize time delay probiems, Usually a constant amount of liguid
(i.e. water )} of a certain temperature is required from the
process, so the flow F2 has to be kept constant during steady
siéte. Only during a change to another desired temperature the
flow F2 can be cﬁanged, the maih control variable however, is

flow F1 of the hot water.

'Earlier investigations of the précéss had shown that this
process had difficult control properties, ariéing out of non-
'-linea:ities, assymetric behaviour for heating and cooling, noise
~ and dead time. Also the ambient temperature influences the
pr@éess behaviouf. To get a éompafative idga of the performance
of the fuzzy contrcllers an ordinary PI-contrcller has been im-
plemented as well. This PI-cbntroller’has been optimally adjus—
ted for.aﬁ experimentally fitted mbéel consisting of two equal
timé constanfs and time delay ( time delay = 10 sec, time con-
étants = 40 sec ). The optimalivalues of the integral gain KI

and the proportional'gain K for three different integral error

P
criteria, the ITAE, IAE and the ISE, of this digital PI-control-

ler are shown in table 1.

ITAE ISE IAE

Ky 0.018 0.019 0.020
X, 1.35 3.02 1.94
TABLE 1 Optimal K, and K,.values for a digital PI-controller

{ eamnle +ime 1 sec )
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One of the main difficulties of this cont:oller was its need

of adjustments to operate over a wide range of desired tempera-
tures. It is cléér that a more sophisticated controller ( sto-
chaétic model, adaptive ) than just a PI type would have a better
performance. Hence the comparison between the PI control and
"ﬁu?zy céntrol" should be regarded as only a rough indication

of relative performance.

The Algorithm

The described fuzzy controller resulted in the following

algorithm:

" Every rule i associates a fuzzy flow (fl) subset to a fﬁzzy

£emperature (t) subset, répresented by their membership func- -

tions:
‘gi(t) > v (£1) i=1,2,3, «0. , I

The actual action applied, flo, can be computed from the measured

P

temperatufe to as follows.
The membership values at the temperature t, are determined

for each rule
ul (to) 1 112 (to) 4 A 14 UI (to)

The implied fuzzy subsets for the flow f1 have a membership

function A that can be calculated for each rule as
ML) = min [ W (eg) 5 v, (F1)] i=1,2, 00, I

The overall fuzzy subset for flow is'obtained by using the "or"
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statement
A(£1) = max min [u, (tg) 5 vy (ED)] i=1,2, ... ,1I
i 1

The result is a fuzzy subset which ranges over all values of the
flow. As the action is taken at the maximum value of the member-
ship function of this fuzzy subset, i£ can be determined direct-

ly'by taking that value of the flow fl for which the following

OI
holds

‘l(flo) = m;i mix‘mln [ ui(to) ;'vi(fl)} i=1,2, ..,1I

The Fuzzy Controllers

The Fuzzy Sets

-

The fuzzy sets used in this application were of a continuous

form. An uniform structure of the membership function for all

fuzzy sets was chosen, namely the continuous function

W) = (14 (al-e))P )7t

(.see figure 2 '}. This choice has the advantage that the'desired
shape of the fuzzy set can be adapted by just three parameters :
¢ alters the point of minimum fﬁzziness ( u=1 )}, a the spread
and b the contrast. Because the decision procedure would become

too time~consuming in the continuous case, the fuzzy output

sets were calculated at finite quantized intervals of the support

set ( flow ). The definitions of the fuzzy sets used are shown

in table 2. Fl is quantized in 12 levels, dFl in 15 and F2 in 18.
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x: temperature error, dx: change in error, Fl: warm water flow,

dFl: change in Fl, F2: cold water flow.

o T G,

e

e Wk

 NAME ' SUPPORT SET MEMBERSHIP FUNCTION

not small % 1 - (1+0.5x) 7%
small X (1+0-5X)ul

v;ry small x (xh 7t )
slightly small X (140.5%) "1 for x> 1l else O.°
small x (1+(3 (x-1)) )71
medium small X (1+(3 (x-0.5)) %)t
extremely small X +(3x) %t

emall dx (1+(3ax) %) "t
‘medium ax (1+(3 (ax-0.5)) %) 71
big ax (14 (ax-2) %) ™1

very big Fl1 (1+2(F1-12) %)L
very small F1l (l+2(Fl)2)~l’

near st.state Fl° (lf(B(Fl“*l))z)nl
very near st.state F1° (1+(3(F1'~0.5))%) "%
small darFl (1+(2 (aF1-0.2)) ) T
‘medium arl (1+(2(@ri-1)% "1
| big arl (1+(ar1-3)2) "1

very big F2 (1+2 (F2-18) %) 7L
very small F2 (1+2(F2-1)%) "L

TABLE 2 Definitions of the Fuzzy Sets used
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3.2 Heuristic Structure
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" Whereas in[j] just one fuzzy control algorithm has been applied

to a real dynamic process with succes, in this research three
types of such fuzzy algorithms have been tested. In stead of
asserting one fixed structure of the human operator's control

heuristics, namely that a process operator generally uses error

Lo, R

and rate of change of error to calculate a change in the value  75
of tﬁe process input, éeveral'diffefent heuristics'have been a |
applied. The reason for this was the'fact that one part of the
control - keeping the tempefature accurately'at andesired vaiue -
aﬁpeared to be difficult for a human controller. Tt Qas éitre-
mely difficult to avoid oscillations around the setpoint. Hence
three sFrategies for this "steady state" cbntrol have been tested:
{1) the operator uses error and rate of change of error‘to affect
a change of flow.( process input ).
(2) the operator only uses the error as information a#d'compen-
Vsates by changing the flow.
(3) the operator uses error and adjusts the flow above or below
neutral position.
In this third strategy the controller was supposed to know what
absolute value of the flow ('Fl } was the steady state position,
hence a static flow-temperature characteristic was assumed to

be known. A sﬁmmary of these three different strategies is given

in table 3, .
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Observation Actioﬁ

‘strategy 1 error and change in flow F1

change in error

strategy 2 . error | change in flow Fl
b.fétrategy 3 error ' flow F1 plus static
V information

- ' _ -

TABLE 3 Control Heuristics

Because the aim of the control was not oniy to‘keep the teﬁpe~
rature aécurately,at é desired value, but also td perform step

- changes in temperature as fast as possible, the set point changé
strateéy should'obviously~have a kind of bang-ﬁang charécter,
both for flows fl and F2 ( thé latter is only used duriné this

change as stated earlier ).

3.2 The Rules o o - .

The first sﬁrategy resulted in the following set of rules

if ¥ "not small" then Fl1 "wery big"
| - then F2 "very small"
if x "small"® then Fl1 "very small"
, then fz at steady state
- 1f x "very small" then F2 at steady state
| then if increase of x "small" then deérase of Fl "small"
then if increase of x"medium" then decrease of Fl "medium"
then if increase of x "big" then decrease of F1 "big"

* 4.

These are the five rules to control a temperature below setpoint
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while it is increasing. Apart from the second rule a completely
symmetric set of rules was applied in the other cases.

The second strategy was realized by the following rules

if x "not small" . then Fl "very big"
« then F2 "very small"
if x "Slightly small" then Fl "very small"
then Fz.at steady state
if x "smali“ ~ then increase of Fl "big"
'then F2 at steady state
fif X "medium small" = then increase éf Fl "mediumf
ithen F2 at staedy state
if x "extfemelf sﬁall" then increase of F1 "sma}l"

" then F2 at steady state

The additional refinement of tﬁe "small" region requifed an

:appropriate modification of the ﬁrevious fdzzy set "small“
( see table 2 ). | | a

Tﬁe‘third strategy which has been applied consisted of the

.following set of rules

if x "not sméll" then F1 "very big"

| | then F2 "very small"

if x "small" then Fl "near steady state;
then F2 at steady state

if x "very small" then fl "very near staedy state"

then F2 at steady state

Because the static flow~temperature characteristic was very

sensitive to the environment, the algorithm was set up to

enable alterations of this characteristic during running time.

ot T B g m
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3.4 Results
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The overall results of these three types of controllers have

been summarized in table 4 and compared with a PI type control-

ler mentioned above. In view of the bang-bang rules it is not

third fuzzy type

“~TABLE 4 Performance of Different Controllers on a Step Response

of 10 degrees centigrade.

surprising that the systems with thé fuézy controllers all show

much faster step responses than the giassical PI type control

system ( for a step of 10° centigrade 'abbut 0.3 minute against

1.5 minute for the PI controller ). However the first two con-

trollers behaved like the human operator in that their accuracy

was poor ( 1,5° centigrade oscillations around the setpoint

against 0.4° for the PI controller ). The warm water process

with the third type fuzzy controller showed the best performance.

It combined the same high speed step response as the other fuzzy

controllers ( 0.3 minute ) with the same accuracy as that of the

PI controller { 0.5° variations ).

 Controller Rise Time Overshoot - Temp.Variations
{minute) (centigrade) (centigrade) §
classical PI type 0.7 min 1.5° 0.4°
ifirst fuzzy type 0.3 min less than var| 1.5%
second fuzzy type 0.3 min " 1.5°
0.3 min " 0.5°
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A possible explanation of the better results of the last
fuzzy controller type could be the additional information about
the "neutral" .steady state flow position. The introduction

~of this steady state information has’the disadvantage that
the controller has to be readjusted for each different‘desi~
red temperature value. The sensitivity of these settings to
chanéing surroundings is another problem. The fact that the
actual rea&justment.of these settings &ufing running time -

. was pé:formed By the‘human operator indicates that é.vague.
guess of this steady state fiow'value might be sufficient.
‘However it has to be realized that in some industrial pro~
‘ cesses even a guess of ‘such steady state characterlstlcs

f‘may be impossible.

Another highly intuitive way of explaininqvthe differences
in behaviéur §f these three fuzzy controllers could be to
‘relate théir structure to‘those.of éonventional coﬁtroliers.
Looking only at the "steady state" rules, it can be obser-
ved that the 1nputs and output of the first type fuzzy control-
ler are similar to those of a PI type 1ncrementa1 control
algorithm. The input-output quantities of the second type are

- those of a puréiy I type incremental algorithm and finally

~the third fype hés an input and output identical to those of
a Pvtype controller using a positional algorithm ( see table
3 ). It should be emphasized that this supposed analogy
lacks any rigid basis. The sort of combined bang-bang and
"PI" nature makes an explanation of the results from only

this second point of view even more doubtful. Clearly more

*
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detailed study on such an analogy should therefore be done
{ and is cufrently being conducted ) before its conclusions

are used to assess the accuracy and stablity.

One oﬁéervation which can definitively be made is that this
kind of fuzzy control is very well suited for an easy imple-
mentation of a time optimal control. The calculation of a
switching line for the bang-bang control of a noisy time
delaf system is extremely difficu;t and the simplicity of
this fuzzy bang-bang control is therefore an important ad-

vantage.

Further Remark

-It is possible to speed up thisvfuzzy algorithm‘byhusing an
alternétive appfoach to decide at the beginning to which
fuzzy tempe:atﬁre subset the measurement belongs. This is -
interpretedvas to mear. the fuzzy~subse£lwhere the ﬁeasured
peint has the~higﬁ§st membership gréde. This decision.giveé
thus tﬁe'rule‘n;mber (3;0 ) at which | |

e (t.) = max u..(t )
10 0 i iv70

Having determined this rule number, the appropriate~éalcu~
lations are carried out for this rule only. The action is then
taken at that flow fl0 at which

A£1.) = max min [u. (t.) : v. (Ff1l)
(0] £1 10 (6] 10 ]

This method not only saves a considerable amount of computing

time but also has a kind of intuitive appeal left. Its equi-
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A comparison has been made between the response of
the system for the three different fﬁzzy controllers and
with DDC controllers of a non fuzzy nature. The DDC
controllers had a PI action; the setting of this action
. was optimised according to‘the ISE~, IAE- and ITAE-

criteria on a linearised model.

All the fuzzy'controlléré shqwed a faster step res-
ponse of the system than waé possible with the DDC-

" controllers. However, it was more difficult to get
accurate control of tﬁe tempeiature ( see table 4 ).vThe
simplest fuzzy cohtrcller, the third type; showed the
bést performance énd #ombined a high speed response’with
uthe same ac&uracy as that of the optimal DDC-controller.
‘?he other two fuzzy controllers showed a tendency to

oscillations around the steady state value.

It has ﬁeen shown that the three‘different types of
fuzzy controllers show some similaritiés with proportional
nal and integral actions. Althouch the reéults of this
preliminary research on fuzzy control are promising, the
accuracy and stability problem needsbﬁo be inverstigated

more deeply. This kind of fuzzy control is essentially
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nonlinear but it is the way the particular control
algorithm is derived which is the novelty and major
contribution of this method based on fuzzy set theory.
The easy way of implementing the experience of a human
bperator in the controller makes the application of
fuzzy linguistic rules attractive for those processes
that are already controlled by operators. This-is bar—
ticularly true in cases where‘automgtic control follo-~
wing the usual methods requires time consuming and

complex modelling and control methods.
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5 Appendix : . Fuzzy Systems

A fuzzy subset A of a universe of discourse ( support set )

X 1is characterised by a membership function u,(x). This

function assigns to each element X € X a number uA(x)

in the closed interval [0,1] , which represents the grade

of membership of x in A [ 5]. Three basic operators used in

fuzzy set theory are defined as follows:

‘ia)

(b}

(c)

The union of the fuzzy subsets A and B of the universe of

discourse X is a fuzzy.subset, denoted A U B, with a

‘membership function defined by

Hpyp @) = max Ly ) 5 up(x)] xex

The union corresponds to the connective "OR".

The intersection of the fuzzy subsets A and B is a fuzzy

subset, denoted A N B, with a membership function defi-

ned by
Ma ) = min Duy (x) 5 g (x)] X eX

The intersection corresponds to the connective "AND".

The complement of a fuzzy subset A is a fuzzy'subset,

- denoted = A, with a membership function defined by

Moo al) =1 -, ) x € X

Complementation corresponds to negation "NOT".

The definition of a fuzzy set enables us to deal with the

information contained in the experience of a human operator.
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For instance linguistic expressions, such as the flow is
"big", "medium", "small"™, "not big", etc. clearly are fuzzy

subsets of the universe of discourse "flow".

Furtﬁermore to represent in a fuzzy way the concept of a
system mapping from aﬂ%inéut to an output set, the concept
of a fuzéy condifional statement ( implication ) is ihtro-
duéed. The system is describéd as a set of fuzéy conditio-

nal statements of ﬁhe form
if "input is big" then "output is medium"

The membership function corresponding to a fuzzy conditio-
nal statement S: if A then B, given the fuzzv subset A of
"~ the universe of discourse X and the fuzzy subset B of Y,

is defined by [5]
uS(y,x)~= mig [uA(x)"; uB(y)] X e X ;'y e Y (1)

‘The complete‘system is described by a set of such fuzzy

r.4 -

imblications* e.g.

if “"input is big" then "output is medium"
or ( else ) |

if "input is medium" then "output is small”

Using the above metioned definition of the "or" connective
the final fuzzy implication S composed of two implications:
if Al then Bl or (else) if A2 £hen 82 + has the membership

function
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Mg (¥ %) ='max[min[ﬁAICX); xiBl(y)] ;min[qucx); uthyE}m

This can be extended to the case of more than two rule state-

ments.

Having defined the felation between fuzzy subsets, the next
step is to calculate the infered fuzzy subset, given a cer-
>tain implicand fuzzy subset. Knowing the rule: if "input is
- big" then “output fs medium" the question arises what will
be the output when the "inpuﬁ is very big"? For this,‘the
:folloéing compositional rulé of inference is used. Given a
fuzzy implicatibn S: if A-tﬁén B, the fuzzy'subset BY, in-
'.fered from«é given fuzzy Input set A'* ( A and A! fuzzy
l?suBSeﬁs of X; éAand é‘ of Yj[; has a mémbersﬁip function

defined by [5]

.vB;CY1'= max min {ﬁA,(x) H us(y,x1] oL - {3)
‘ % |

The input. to the systeﬁ in this control application was
C?nﬁiﬁered to be preCiéeg not fuzzy; There is no fuzzy
input, hence there is no need to apply the' compositional
rule of inference. ﬁsing the intuitive meaning of a fuzzy
qiﬁplication? if A then B, the implied’output can never

achiéve a higher degree of truth than that of the implying
| input. That would be contrary to the hature of an implica-
tion. Hence one obtains the fuzzy output B up to the degree
of membership of the measured value X4 in the fuzzy input A.

This gives the fuzzy output set
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Hge (y) = min [uA(xo) ; uB(y}] = uS(y,xo)b

An alternativé way to obtain the same result is to interpret
thié input X, as a bfuzzy" input set A' with all memhership
~values uA,(x) equal to zero, except the value at the mea-
sured point pA,(xo) which is equal to one. Equation (3)

- the compositional rule of inference - reduces then to
Ui ly) = ugly,xq)

h Tﬁe'representatipn of a'fuzzy system is used as an §l§o£ithm
for a fuzzy controller: a decision has to be made as to
| ‘ whiéh particular action should be taken and fed inﬁo the
V‘process.'The deéision procedure épplied'here is to take that
value Yo at which the final mémbership functicon is a magimum,
that is y, at which |

- -

| Up, (yo) = Max Mg, (y) = max max‘min[ Mae (X} uS(y.x)]

Y Yy X . '

(4)
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Footnote page 21 '

* the extension to the case of an implication of the form:

if A the ( if B then C ), is straightforward:

minfu, (x) : minfug(y) 7 uo(2)]] = minfu, (xX)sug (v)iug (2)]
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THE APPLICATION OF FUZZY CONTROL SYSTEMS TC INDUSTRIAIL, PROCESSES

P.J. XKing and E.H, Mamdani

INTRODUCTION

Complex industrial processes such as batch chemical reactors, blast furnaces, cement kilns
end basic oxygen steelmeking are difficult to control automatically. Thisg difficulty is due
to their non-linear, time varying behaviour and the poor guality of availsble measurements.
In such cases aﬁtomatic control is applied to those subsidiary variables which can be
measured and controlled, for example temperaxurés, pressures and flows. The overall process
control objéctives, such as the guality and quantity of product produced, has in the past

ok

been left in the hands of the human operator.

.In some modern plants with process control computers, plant models have been used to
calculate the required controller settin®s automating the higher level control functions.
The plant models whether they are vased on physical and chemical relationships or parameter.
estimdtion methods aré approximations to the real process and may require a large amount of
computer time. Some successful applications have been repérted, but difficulties have feen
experienced where processes operate over & wide range of conditions and suffer from

stochagtic disturbances.

An alternative approach to the control bf compiex processes is to investigate the control
strategies employed by the human operator. In many cases the process operator can contrcl &
complex process more effectively than an automatic system; when he experiences difficulty
" this can often be attributed to the rate or manner of information display or the depth to
which he né& evaluate decisions.

1 ' A .
" The operator usually expresses his control strategy linguistically as a set Qf'heuristic
decision rules. It is difficult to convert this qualitative control strategy into a
quantitative controller design due to the imprecise nature of the rules. Therefore means of

Aimplementing the human operators control rules directly as an automatic control system is of
/
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interest, Zadeh's development of fuzzy sets1 and fuzzy'algorithmsz proVidés a means of
expressing linguistic rules in a form suitable for processing using a computer. In this
paper are reported some case studies on pilot-scale processes in which heuristic strategies

using fuzzy statements are applied to the control of dynamic processes.

THE CONTROIL SYSTEM

The structure of the control system is shown in Fig. 1; the heuristic decision rules replace
a conventional feedback controller in the error channel. The calculation of the control

action is composed of the following four stages:

1) Calculate the present error. .
2) Assign the error value to a fuzzy variable such as Positive Big.
3) Evaluate the decision rules using the compositional rule of inference.

4) Calculate the determimstic input required to regulate the process.

The_ exact form of the decision rules and the varisbles used in them will depend on the,
process under control and the heuristics employed. 1In general the process operator uses
error {E) ani rate of change of error (CE) to calculate a change in the value of the

process input (CU) and the decision rules are designed to have the seme effect. This

spproach also corresponds to the versatile proportional + integral controller uéed frequently -’

in the process industry.

The error value and the change of error values calculated are quantised into a number of
points corresponding to the elements of a wumiverse of discourse, and the values are then

_ assigned as grades of membership in seven fuzzy subsets as follows: 5) PB = positive big,
2} PM = positive medium, 3) PS = positive small, 4) PO = positive nil, 5} N0 = negative nil,
6) XS

between measured error or change in error value and grade of mewbership are defined by

it

negative small, 7) NM = negative medium snd 8) NB = negative big. The relationship

look-up tebles of the form given in Table 1. These basic subsets may then be used with the
three basic operators of union, intersection and complement to compute such values as "Not
positive big or medium". Hedges may alsc be used but to avoid complications these were not

implemented in this study.

The decision rules are implemented as & set of fuzzy conditional statements of the form,

pd _ "If E is NB then CU is PB". .
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3

This - expression is evaluated using the compositional rule of inference for a particular
value of error E as described by ZadehB. The result is e value for change of input CU for
any given value of error E. In most cases the rules are more complex than the example above

and for the system using change of error (CE) end error (E) will be of the form,

"If E is PB or PM then if CE is NS then CU is NM"

but the same methods of evaluation still apply.

" . 4
Several rules are required to completely define a control system; the results of evaluating
each rule are conmbined using the union operator (max) to give an overall fuzzy value for the

eontrol action. For example,

"If A, then (if B, then C,)
or If A, then (,i then C,)"

ete. .
So given values of measurements A, éé, B;, Bé'etc the individual rules results will bve C!,
Cé etc and these are combined to give the overall resulting control action,

C' = max (C!, Cé ete) N

Hence more than one rule may contribute to the computation of a control action.”

. The result of evaluating the fuazy rules for e partlcular set of input values is & fuzzy set
of grades of membership for all possible control actions. In order to tsake 2 determlnlstlc .
action one of these values must be chosen, the cholce procedure depending on the grades of
memberéhip and the particular application. In this work the control value with the largest
grade of membership was selected, except in the cagses where several control actions had the
same {largest) grade of membership. In these cases where more than one peak or a flat peak

is obtained the value midway between the two pesks or in the centre of the plateau was
seiected. Typical results are shown in Fig. 2 as curves of grade of membership versus control
v'action. The shape of these curves can be used t¢ assess the quality of the control rules
used; Fig. 2- (é) shows a single strong peek indicating one dominant control rule in this
region. Fig. 2 (c) shows a fuzzy result which indicates an absence of a good set of rules,
while Fig. 2 (b) with two peaks shows that at least twc strong and contradictory‘rules are

. present, In both these latter cases some modification of the control rules may be

necessary to obtain good control.

The rules are evaluated at regular intervals in the same way as & conventional digital
control system. The choice of sampling interval depends on the process being controlled and
should be selected $o that at least five significant control actions are maede during the

process settllag time.
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Control of a Boiler and Steam Engine

4,5 conducted an application study on a small boiler steam engine

Mamdsni and Assilian
combination. The heat input to the boiler was used to control the boiler pressure snd the
steam engine speed was controlled by adjusting the throtile opening at the input of the engine

ecylinder. -

The process dynamics could be approximated by two first order lags in series, with time
constants and gains varying depending on the operating conditions. The rules were

evaluated with a 10 second sampling interval.

Operating experience and technical knowledge of the process was used to specify two sets of
heuristic fuzzy control rules for the two feedback loops. The look up tsbles used to specify
the fuzzy subsets for values are all similar in form to Table 1; the number.of quantisation
.levels used was 14 - for error, 13 for change of error, 15 for heat input change and 5 for

’

throttle input change. Details of the rules used are given in the Appendix.

The fuzzy control rules were implemented on a PDP-8 computer and used to control the plant and
& conventionsl digifal controller was also used to control the two loops. The control
‘results obtained for the pressure loop are shown in Fig. 3; the digital controllers vere
difficult to adjust as the process is highly non-linear and good control could not be
achieved at different operating conditions with the same controller settimgs. The fuzzy
control system was much less sensitive to process parameter changes and gave good control at
all operating points, in many cases better than the conventional control system results.
This can largely be attributed to the non~linear nature of the heuristic rules, which could

be used to give a fapid,response and a small amount of overshoot.

Temperature Control of a Stirred Tank

The résults obtained using fuzzy control of the steam engine were much better than expected,
so a second appiication study on the temperature control of a stirred vessel, part of a
batch reactor process,is currently being conducted. .The process consists of an 80-gallon
stirred tenk which can be heated by a steam heating coil and is cooled by recirculating
tank fluid through an external heat exchanger. The vessel temperature is controlled by
changing the stesm or recirculating flows. : .
The dynamics of the stirred tank can be approximated for smell changes in temperature by an

integrator with different gains for heating and cooling and & pure time delay of 1 minute for

h
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heating and 0.6 minutes for cooling, Initial control experiments were conducted using the
pressure control rules developed on the steam engine, while the process dynamics differ
considerably it was thought that similar heuristic rules would be effgctive, if the values
used to define the fuzzy subsets of magnitude were suitsbly adjusted. ‘

The results obtained by simulating these control rules in the simple process model are shown
in Fig. 4 for set point changes. Two different sampling intervals were used to evaluate the
rules,30 seconds and 1 minute; in both cases when delays were included the temperature
oscillated sbout the desired value. If the delsy was removed from the process mcdel,howevefl
good control responses were obtained. In the case with a one minute sempling interval the
process finelly settled to a steady value; this result was confirmed in practice as the
results in Fig. 5 show the response of the process with a {-minute sawpling timse

interval to set point changes.

The input quentisation levels for the fuzzy subsets of value can be edjusted to improve
the system respénse. Hovever, more detailed simulations over & wide range oi'quantizaxion
values show that the deley is the cause of the instebility. The steem engine hagd
negligible pure time delays end the rules formulated using error and chenge of error values
vere adequate. However,vwhen deleys are present the rules must &lso account for the control
inpﬁts applied to the process which have not yet been obzerved as & change in the process
output. For systems with pure time delays the control rules will have to include a fuzzy
model of the system to predict the future output of the system, or in other words previous
velues of control input will have to be included in the rules. New rules %o control the
whole of the reactor process are being formulated along these lines, but no results are

available yet.

CONCLUSTONS

4

The results cobtained so far show that processes can be controlled effectively using heuristic

‘rules based on fuzzy statements. To obtain good control the fuzzy rules must be correctly

formulated to take account of time delsys when they occur, this conclusion is similar to
that arrived at for conventional controllers when deleys are present.

The designer requires some knowledge of the process in formulating the rules, for instance
knowledge of process delays and speed and magnitude of response,but only epproximate velues
are required and can usually be obtained by operating the process. The fuzzy control system
described is %nberently non~linear and phase plene plots showing the system quantization

;
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levels, the rules used in eech area and the magnitude of control action have been used to .

adventage as a design aid.
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The approach described here is n;)t proposed as an alternative to 4conventional control m
situations where this is effective; however,in complex systems the use of fuzzy algorithms

for control may be a f;on-trivia.l alternative approach. The fuzzy _meésurements, required can
be obtained from instruments or directly from the human operator, eand there is considergble
scope for interaction between the man end machine due to the fuzzy nature of the algorithms.

In the most complex situations, control is often based not on one variable but on a .
combination of variables or events which the human operator recognises as significant. )
‘Before control rules can be formulated these patterns must be identi‘fiec‘i 8s éigniﬁcaﬁt : V.
measured variables, While the approsch described does not resoive this problem the useA of

fuzzy concepts will be of use in this situation. N
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" APPENDIX

Steam Engine Control Rules

Pressure Control Algorithm

Pressure Error = PE, Change in 'Préssure Error = CPE and heat input change = HC.
If PE = NB then if CPE = not {NB or NB) then HC = FB

Or

If PE = (NB or NM) then if CPE = NS then HC = PM
or

If PE = NS then if CPE = PS or NO then HC = PM
or

If PE = NO then if CPE = (PB or PM) then HC = PM
Or ;

If PE = NO then if CPE = (NB or NM) then HC = NM ’
or .

/ If PE = PO or NO then if CPE = NO then HC = NO

or ,

If PE = PO then if CPE = (NB or NM) then HC = PM
or

If PE = PO then if CPE = (PB or PM) then HC = NM
Or ‘ A

If PE = PS then if CPE = (PS or NO) then HC = NM
or

If PE = (PB or PM) then if CPE = NS then HC = NM
or :

If PE = PB then if CPE = not (NB or NM) then HC = NB
Or :
If PE = NO then if CPE = PS then HC = PS
or .

If PE = NO then if CPE = NS then HC = NS
or |

If PE = PO then if CPE = NS then HC = PS
or,

If PE = PO then if CPE = PS then HC = NS~
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Speed Control Algorithm

Speed Error = SE, change in speed error = CSE and change in throttle opening = TC

. If SE = NB then if CSE = not (NB or NM) then TC = PB

or ,

If SE = NM then if CSE = (PB or PM or PS) then TC = PS
or

If SE = NS then if CSE = PB or PM then TC = PS
or ' |

If SE = NO then if CSE = PB then TC = PS
or _ , ,

If SE = PO or NO then if CSE = (PS or NS or NO) then TC = NO
or : |

If SE = PO then if CSE = PB then TC = NS
o .

If SE = PS then if CSE = PB or PM then TC = NS
or .

If SE = PM then if cSE = PB or PM or PS then TC = N§
or

If SE = PB then if CSZ = not (NB or NM) then TC = NB
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Ladislav J. KOHOUT: TOPOLOGY AND AUTOMATA.

1. Introduction

Conventional topologies play an important pole in the study of sta-
bility of continuous, dynamic and control, systems [i],[é]. Recently
some attempts were made to unify automata and control theories Eé],[ﬁ].

The topological methods have been usefully employed in these generalisa-

tions Bﬂ,[gj.

It has been shown that, in certain contexts, standard topologies
are too special to be applied to general systems [7],[8], or to automata

I'9] and that suitable generalised topologies are required [ f1],

Our present study has been motivated by the attempt to apply topo-
logical methods to studies of ddaptivity, in particular, to the problems
formulated by Gaines [lﬁzf . This note is an expanded and complete
revised version of a previously unpublished note Elé] that had some limited

circulation earlier.

This note does not aim at the presentation of any non-trivial or new
mathematical results. Its only aim is a rather elementary discussion of
applications of topologies to automata theory and discussion of the seman-

tics of some topological constructs in this context.

2. Intuitive Motivation

Set theoretical topological methods employ subsets or families of sub-

sets of points and mappings or relations between them. We shall not work
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with individual states, inputs and outputs of an automaton but with sub-
sets of them instead. Hence we shall aim at methods for description and

manipulation of hyperstates, hyper-inputs and hyper-outputs,

In general, we are interested in reachability, controlability and
stability of a state-determined system. For example, we want to deter-
mina a hyperstate that can be reached from a given hyperstate by the appli-

cation of a particualr hyper-input etc.

Systems can be classified according to their dynamical properties,
this classification forming a hierarchy of families of equivalence classes

module a subset of hyperstates satisfying the condition that the mappings

between the corresponding hyperstates of distinct systems are homeomorphic.
This approach then naturally leads to use of continuous mappings, closures

neighbourhoods, nets, etc. in generalised topologies.

The topological approach based on generalized topologies is by no
means confined to crisp systems, for topological structures can be fuzzi-
fied. This leads in a natural way to generalised topologies "without

points" (Koutsk§ (1947, 1952), cf. Kohout (1975) p. 29 of 5.1).

Connection between various modal logics and their topological semantie
models in the form of a Boolean algebra with an additional operator is
well known (McKinsey (1941) McKinsey & Tarski (1948), Lemmon (1966).
Usefulness of modalities for description of dynamics of systems has been
pointed at in Kohout 1975, Gaines & Kohout 1975, Kohout & Gaines 1976.
If topologies without points are used instead, this leads to a certain

type of fuzzified modal logics.
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3. Definition of Basic Concepts

A state-determined system is specified by the relation o:
o IxSs8 =+ §
where S = {8i} is the set of states and I = {ii, iys ven is ee } the

set of inputs of the system.

The next state relation (NSR) o can be decomposed into a family of
relations I with regard to individual inputs:

.

T = {Gil’UiQ’Ui3’ . cin,...§~ i 12,..in,.,eI
The mapping u
u: Pa) > AR
will be called a generalized closure operator['9] . The tuple (Azg}
wil: denote a general topology generated by the closure operator u on the
carrier set A. Special structural properties of each topological space

will be characterised by a set of axioms [9}. In particular, we shall

be interested in axioms having a topological property [ié]. This notion

is closely connected with the concepts of hormeomorphism and continuous

mapping.
Definition 1: (mapping continuous at a point 4}2L p. 269-270).

Let £ be a mapping of a closure space & = (R, u) into a closure space

&= {S, 3} The mapping f is said to be continuous at a point x of (& if
X <R, xeu(X) implies £(X) e¥(£(X)).

The mapping is said to be continuous if it is continuous at each point x

of R, or equivalently,

XA implies £fu(X))c ¥F(X)]
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Definition 2: A homeomorphism is a bijective mapping f for closure spaces

such that both f and f"l are continuous.

Definition 3: A topological property is a property such that if a closure

space:ﬂ = (R,£>vposseses this property then all homeomorphs of P also

have this property.

In the sequal, an automaton will be viewed either as

a) a next state relation ¢, or

b} a time system

a) Next state relations o: IxS -+ S with inputs S and states I,

Each input ik el induces an input restriction g, onge
k

o, :{ig} x S+8

k
The projection I of ik x S into S is a family of subsets §h= {SH(‘ )
S qoS oioS .. b~ ll
m.,*>°n,, | } such that S_&P(S).

(i,) (1) (1k) n

The elements of P(I) will also be call;é the input-base (i-base)
generators. We can also define W~ projection such that IXSk is projected
into I. |
b)  time system
P: TxS =5 where T is the time order.

This T will induce a quasi order p on the set of states B. Note that if
3 precedes ¢, . This does not exclude the situation where 8 also
precedes $; in another time interval. It is also possible that $ , never

precedes itself. Hence P is transitive but neither reflexive nor symetric.

Obviously, p, M, W will generate distinct generalised topologies with

operators TOPT, TOP, TOPZ respectively.

EQET: IASY +AAS)

TOP 2 R(8) +A(8)

TOP.: A1) > A(1)
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Each relation will induce a corresponding generalized topology by

means of the canomca’ expansion.

Def inition u:[ié}p. 38 (Canonical expansion of relation to a class of

sets A). f:fgl" dhe e L‘irséf‘l‘f"'&~ Jee Lt‘-)h.] f"?")r

4, Important closures

Topological properties and some important axioms for generalized
topologies that appear in the literature were briefly reviewed in [9]

All axioms used in the sequel can be found in the list given at pp.<26-27.

4,1 The Transition Closure Ugr

This closure represents the set of possible states that are attained
aftar a one-step transition.

EO(X) = XUo(X), XS

It is obvious that this closure will be an OIA-topology. An OIA

topology taken as a Boolean algebra with the operator L is sometimes

called an extension modal algebra.

Lemmon established the connection between extension algebras and
T-modal systems. Hence the modal logic for description of transition
clesures can be based on a T-modal system {9]. . The modal operator

in this system will determine the set of possible states after one

step transition.

4,2 Accessibility closure

This closure is defined as the transitve closure of the next-state

relation o:

a(x) = XWa(xWa? W OV, U (XN . . ..
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This will be at least a pre-ordered (REFL + TRANS) OIMU-topology. In
the case that the corresponding next-state closure also defines an A%-

topology, the u will be an O0IAU-topology.

It is apparent that the closures defined in this paragraph will be
upper U-modifications (U: u(X)=u(g(X)}) of the transition closures defined

in 4.1,

On the other hand, accessibility closures must have properties
induced by the quasi-order p defined in the section above, (they have

to have the properties of TOP).

If we assume that an automaton can be at present in any single

state s, the topological space on the state space defined by accessibi-
lity closure will be a pre-ordered AIOU-topology. Hence it can be repre-
sented as a special case of Sk modal logic. It appears that time modal
logics are relevant to description of segments of automata behaviour.
Unfortunately, the state space itself is only a pre-ordered space hence
even time modal logics of such generality as S#.2 are not sufficiently
general to fully describe a genemal automaton. Also, the answer to the
question of a single pre-finite extension of S4 which would describe all
and only fine state machines is rafher negative. There exist 5 pre-

finite extensions of S4 each of which can describe some automata of a

special type.

4,32 Generalised Measures

In some practical applications it may be more convenient to define
generalised metrics first and then to find corresponding generalized

topologies induced by the metric. For example, in the case discussed in
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the paragraph 4.2 we can define a pseudo-quasi-metric satisfying the

following inequalities

(1) d (2,n) 2 0
(2) d (x,x) =0
w) d (x,z) 2 d (x,n) + d(n,z)

where distance d is defined as inf. {d(x,n)- xeX, yeY}

We can see that this cannot be quasi-metric, for we can leave simul-

taneously Xgn and X2n with x#y

The first two conditions (1) (2) induce an OIM topology.

4.4, Iterations in generalized topologies

For investigation of limit cycles, it is useful to look at iteration.
We take g(X) = o(X) and investigate iterations inthis topology.

1. g2 = x

2. gg+l(x) g(gg(x)) for every ordinal.
3. gE(X) = y exist. gg(x) |ogy<€ | for every limit ordinal .
We are interested for example in the smallest ordinal for which

+1
Sz g L,

5. Control-theoretical interpretation of some topological concepts.

Reachability and accessibility play an important role in the control
theory and have importance in applied automata theory such as the theory

of adaptive behaviour (Gainegle?Q){mj.

5.1 Accessibility

Apart from potential accessibility which can be interpreted in modal
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terms as ggssibilitz as discussed above in 4.2.) ~ome other forms of acces-

sibility can be introduced. For example, the next-state accessibility is

defined by the transition closure Mge N-th step accessibility also has
some practical importance. This can be defined by n-th . [teration of

the transition closure.

I Attractors can be defined as the smallest family
of accessibility closures of the set of all singletons of the state-space
or equivalently as a U-modification of the next-state closure on the

same set of singletons (yFa)=g%x;l).

5.2 Reachability

This can be defined as a binary predicate ... is reachable from ... .

Separability of two points or sets plays an important role here.

The usual H-separability axiom and its special instances (¥- H- H -
separibility) are not general enough for this application. Being used
for standard topological spaces they are symmetrical, whereas the transition
function in automata theory is not.

We propose that the following non-symetrical axioms should be
stgdied:

G _: vi(m)nmo ( half of H-axiom)

(o]
G 1 of E
G,: }of H [Mye X we(X) =K ]

(V, is a neighbourhood of M - cf. 5.4 below) In the case that G, holds,

N 3s not accessible from M.
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5.3 Interior

For a given topological space.§b= (S,p) and a subset XSS interior
is defined:

intu (X) = S -u(S-X) when S-X is the complement of X.

Control-theoretical interpretation for the accessibility clesure

as defined in 5.2, then Fru (X) contains only the states accessible from

both X and its complement,
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6. ADAPIION AUTOHATA. ( Gagpes, /972 ) [i0].
§.1. Some imvortant set operations. (Borﬁvka, 1976 2 Introduckem fo Ve Huomy
_ . R ' N of ?rouf«'d aogro«—,o&_,
6.1.1. ‘e shall generalise some concepts of Joruvka. Pod Fuus Ebik&a“’ﬁﬁgmf)

-0~ | | 5.%/q7

Let 5 is a set, a ACS and QCexp S; P is a collection of Pi'

ﬂi
.
&o.

Cperation AlZ

a~r -1 - - '
ACE= ;ilpiﬁ A, picP) ( the § has the meaning s

incident with..' ).
Example: g:((’ ’2 93) ’ (ng”h‘) ] (336))=(§1 9?2 !53)

p1§ P, but pal-p3 (p2 is not incident w;thpr).

Let. A=(1,4); then A:z?':(ﬁ,2,3),(2,3,#)):(51,.523

f.1.2. Ve shall the following notzstion:

Let S be a set and write.gks; 5.éesignates & collection of
subsets of the set S (i.e. Peexp S). P will designate a
partition in S.
Examrle: sq-(1,2,3,l+,5), 82=(1,2,5.!+,5,e:)

T 2((1,2,3),(2,8),(5))  T=((1,2,3),(2,4),(5,6));

* -
(s, [fs, + (s,
1 0! ’ 3 .

Fo(1,2,305 05,5, (5,603 (20, (3,000 =05, §%,5%)
BpaEsq0E,,) 53=(§31’§32?

2P is the urion of all subsets contained in Pj e.g. for §
. ¥

civen above 2§;52
fn  Yhe f&ﬂéunaé fvrli¢-r ¢24 ¢§aaé%,¢éaf7fue/Qﬂﬁf'a%?cs& oo
2é¢u/() g_r 9%/6!(5/ ;f; /LW(’[L;'-‘L’QW ?é f*é‘[q AC"H(L/MS &A}-{"eﬁ,
A«{:{, 2 ola
o % /7144»-( .ée/zw a/{ féu’»ze; //9 72)

- " .

¢ L]

H




€.€/4¢

6.2. Ldantion sets.

-

. In this part we introduce some operations on adaption sets
of Gainesﬁéﬁ For the purpose of our discussion we have to

introduce some new sets concerning non-adaptivity.

6.2.1. “he system of closures ?(Tq).
Let us define an input-restriction of the autunatonﬁQ (1.%.1).
A((T,!)z{T,I,P,S,a‘,u} R |
The system of transitive closures (1.32.2) forms an CIMU=-topol-
ogy on the Al
Take all singletons from S and form a2 collection of closures
according to 4.2.2. This partially ordered collection is ?(T1).
6.2.2. lote that for an infinite state-space S we have to use (instead
of singletons) all H-connected compbnents of the state-space S.
The problem becomes more complicated. The theory of Cech (2]
(pp.362536&,845-8#6) has to be applied. Also the ques’tion‘.
if the next state closure is an A*-topology, has to be décideé

first,

f.2+3. The most important adaption sets.

o ,
F(t) a system of closures of an input restriction by t;
wit) the set of satisfactory interaction;

xX(t) the set of unsatisfactory interaction;

»

The end-sets:

E(t),5(¢) the set of the smallest closures (atractors)
excluding &; |

E+(t),E+(t) the set of positive attractors (satisf. intsaract.)

- -~
Z'(t),.'(t)  the set of negative attrrctors

-
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S £ ) s }ﬁ" s s
For any Ue(F,0,3,P;7,4,B,C,D,J k) =

o(t),5(t)

ACIRACY)
P(t),B(t)
R(t),5(t)
A(E) yA(E)

B(t),B(t)

e(t), )

D(t),D(t)
J(t),5(t)

K(t),K(t)

5.%/49
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the set of possible adaptivity (it is
impoésibhe,té access the positive attractors

from the set of states which do not belong to this
set).

the set of possible non~ada; tivity

votentiall aﬁaﬁtive

3oten£ially. non-adaptive

adapted (unsatisfactory interaction im-ossible)s

non-adaptive (satisfactory interraction

_impossiblejcan not adapt )

comratibly non-adartive
jointly adaptive

jointly non-adaptive.

The calculus of zdaption setis.

ti ess Single task

Ti «3e & set of tasks

fV,U‘-'- set operations on a set of states

Y +++ anoperation on inputs.

U(Ti>=zv<wig ; U(Ti)=F(Ti)-(a$KTi)rF(wi}) s

~U

st

Lornls
where dU is a dual-set of U, o . e .

E, (T:)-Fm)- fx(rItEem )}

-

EXr)-Er) - Aw(n) [ Er)]

:7&,):;:({)5 kkf)z?(f); ~z(;)=Afé) for o siple Yook
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Examples of anvlications of the calculus,.

G
N
)
- G (7] E(h)= {(6) (735D}
F({‘\ =4 t12i227) (20(7) - » '
Cove) (7€) (6) ET80) = wit)CE (8 =(be 1)t Jei0n))~ 16}
19 (1) ' .
( Ee)- 4050
Wit)=(4¢7) ; X(t)=(123799)
o~ e (7¢) (7] ~ .
€t ’-‘E"(!‘:)E‘F(’r,)'f{(zn?)(zwj(gy}(?) » Q{gl),:é(:?)(e)}
Core)(re) (6) / :

Let  Twelt)=06)NG(4)= (1);

P(t) =0 k) ~ T NE0(R) = | gm0 §. PRI (2385%22)

' (1) (7) 9
LT
(arg J(re)(ey 1’

A) =10y Aw)- (oD

~
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- (3478 (€ ) P o) - ()i (D)
- L (Ao ~ -
Fit) (29) E+(t)= { ) ¥ (VY

(M =
NSO

Wi, )= §36€9 5 AR AN

126740 (478N r(8) B 5

rl)- { “*’""” . Pl -ble) , T =(23smeTEs)
(2ay (9 J ;

(r6) m} Al = £ees) ity = 1011}

Als) = {(J’)
£y fin) - {9

ﬁ .
“ o)y

a CHOERICU )7f*£ (ejcr{ex)\vf(n)xf@)j} o (e8e 29)
(4ie)( ) (6)

F(éi vE) ™ .{(11‘3%:@ ?3"3)('23‘1!‘6?3‘5) (3498 7%) (7#)
(i%) ;f:?)

E}“(e ot ) ( bty (JEIED " P »
“tiv) ™ 1LIEYE - Pl N oo — .
! g (225 = FIEVR) = Mfs)w(mt’f(s,vm)

7, (tve)= Clavt )“4w*7>‘( AR &) C (¢ m)‘}

favyxk?/{ - C-A L'~c. Lev./,é.m_vf
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0z, )=E+( ER(T, ) 3,5 (Tix’:?(?si)
P(ti>=r(z~i)-(3(':i>t?‘ 7)) ' : (Ti)=?(Ti)'CP(T;)EF(Ti))
A(Ti)z’:—(Ti)-x(Ti)EP(Ti) B(Ti)=R(Ti}-z:(’fi)CR(Ti) |

J(£)=P(t) 3 k&t):R(t); for t a single task.

c(T,vT)= C(T, }nC(Ta)-(E'(T1)EC~(T2))U(ES’(TB}E@'(T,l))

5 (T)=I(2)-x(T)CT(T)

£.2.5. Ceneralization o<f tle calculus.

Instead of taking an adaption automaton with a two-element
output P=(p+,p') we can take an ordinary automaton with

the set of outputs P:(p1,p2,...,pk,..).

In this case each adaption set will be dependent on the output
and the duelity between U and 4U dissapear. ‘'e have to modify
the notation accordingly. U; shall write c.re J(TiIPk) instead

of J(Ti)' For our special case of adaption automata we-

shall obtain J(T)=3(T7[5+) and K(M)=d(T[»n') etc.

The generalised calculus can be used for investigztion of
reachibility and controlability in general (non=linear)

automata as well as for investigation of some stability

Aff‘wjpérﬁke‘s o
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6.3 Stability

Investigation of relationship between sets describing the
state of an adaption automaton and corresponding topoloéies can
be regarded as a special case of investigations of stabiliﬁy. The
closures induced by a next-state relation can be compared with the
closures induced by the tolerance relation that determins the topol-
ogy with respgct to which the . stability of a dynamic trajectory of
the automatoniivaluated.

In some instances in may be advantageous to work with the
generalised metrics that corréspond to the closures in question
than with the closures directly.

The tolerance relation that determins the regions of stability
can be expressed by a semi-pseudo-metric given by the following
expressions:

(1) d(x,x)=0

(22) d(x,y)>0

(2b) d(x,y)=a(y,x)

The topology induced by an input or a set of inputs defines
a preordered standard topological space that can be defined by also
by the following generalised measure:

(1) d{x,x)=0

(2a) d(x,y)=0

(3) da(x,y)&d(x,zHd(z,y) pre-ordering

Stability of a set of inputs with respect to to a télorance
topology than can be defined. An gutomaton is globaly stable
with respect to a "tolorance" toplogy if the inpui«induced preordered
topology of this automata is a refinment of the "tolerance" topology.

In other words, the automaton is globaly stable if the U~modification
of the tolerance topology is finer than the topology induced by inputs.
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In the terms of measures, the necessary condition for the
global stability is that the "tolorance" semi-pseudo-metric is

also a pseudometric.
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ABSTRACT

The paper gives an algebraic formulation of constructive rules for
generating the functionally complete sets of functors in many¥va1ued
logics. The sets of functors which can be generated by the rules comprise
the majority of currently used systems as well as some new systems [5].
The algebraic formulation of the rules, which generalises previous works
on Pi-algebras [9],[10], [ﬁ], is suitable for treatment’df isomorphisms
and transformations in many-valued logics.

The paper also examines the role of functional completeness in appli-
cations. Particular attention is paid to multi-valued models in bioclogy

paychology and medicine as well as to questions of simulation in technology.
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INTRODUCTION

Some logicians consider the functional completeness of many-valued
iogics to be "an interesting feature from the purely formal, algebraic
point of view ... in some ways desirable, but certainly not essential" [g‘,
In@eed, for a logician there exist some other perhaps more important kinds
of completeness (e.g., deductive completeness, etc.). It is‘also true that
some important many-walued logics are functionally incomplefe.

However, the situation considerably changes if we are interested in
applications outside logic. Functional completeness is important in
such applications where it is necessary to be able to generate all possible
many-valued functions by means of basic connectives. It is obviously
desirable to have a set of gates which can generate any combinatory switch-
ing cirecuit [2}[33, but there may exist some other more recent applications
of many-valued algebras, where functional completeness is equally if not
more important. This question will be briefly dealt with in the next
section,

in applications we need to design a complete system of certain proper-
ties. This may be difficult if we use the general criteria\for complete-
ness of Rosenburg [4]. Some difficulties involved were discussed in [9]
together with suggestions as to the use of certain less general rules of
a constructive character. These rules, which determine a wide class of
complete partially-defined many-valued algebras, were discovered by
Pinkava in 1971. These many-valued systems, which are called Pi-algebras

in this paper, include most of the currently used many-valued systems,

(the Post and lattice systems, ring and semiring systems, the Aizenberg-

Rabinovich systems, etc.) as is shown in the table of their partial

classification [5] , Fig. 1 . The rules have already been used for
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generating new sets of gates for many-walued switching networks 5 . More
recent applications include the design of a new many-valued functionally

complete calculus which is used for analysis of protection structures in

multi-user computing systems [6],

The aim of this paper is to give a more general formulation of the
rules which because of their algebraic charactef make it possible to
deal with questions of isomorphisms and transformations[?] in a manner
similar to that of [8] bufr for a much wider class of systems.

The results given in this paper generalize the previous results of
Pinkava [9], [1d] as well as Theorem 10 of Kohout [5].

2. IMPORTANOE OF FUNCTIONAL COMPLETENESS IN SOME APPLICATIONS

Although there exist many types of completeness in logic which may
be more important for a logician then functional completeness of logical
calculi, functional completeness will often be the primary interest of
a scientist or an engineer engaged in practical applications of logic.

The role of functional completeness of logic systems in the desigh
of switching circuits is similar to that of complete spaces in state-space
theories of control [11}. A control engineer may wish to use algorithms
with guaranteed convergence, and analogically a logic designer would pre-
fer minimalization algorithms converging for any switching function.

The latter is impossible if the set of elements into which the switching
circuit is decomposed is functionally incomplete.

In pattern recognition using adaptive many-valued logic nets, the set
of basic 'cognitive' elements of the net has to be complete, otherwise
some possibly important patterns will be misclassified. This is particu-

larly important, if we apply pattern recognition methods based on many-
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valued logics to a set of medical data 13 for the purpose of medical
diagnosis, Similarly, in biological [ié]or psychological and medical

[lﬂ ,[lﬁ],[li}, models based on abstract pattern classification by logics,
the choice of an incomplete set of functors as the base 6f the model
would represent a bias fowards assumptions which might not be contained

in the experimental data. For example, in models of instincté[l@],i}S},
this would represent the a priori assumption that certain forms of
instincts do not exist which are already described by the experimental
data. In models of psychiatric disturbances[lé],léo], this would represent
a priori exclusion of some impairments of the structure, diminishing the
principal usefulness of the model in the search for new symptonms.

If incomplete systems of logical calculi are used for examining
hazards in switching circuits or for modelling fault occurrences in digi-
tal circuits, this again leads to the elimination of certain possibly
vital hazards and faults foom the model, rendering the model unreliable.

In general systems theory approaches to modelling, which use essen-
tially many-valued algebrasfs](an extension of Svoboda's Boolean logic
approach [21] ’ [22] ), the consideration of functional completeness may
influence the choice 6f sampling mask, which represents a heuristic selec~
tion of certain hypotheses.

The common features of all examples hitherto in which functional

completeness is important can be summarized in the form of the following

pPinciple:
Functional completeness is important in all cases where we are not
concerned with deductive systems but with systems which extract some

structure from experimental data or where we are concerned with con-
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vergence of minimalisation methods applied to many-valued algebraic

models.
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3. FUNCTIONAL COMPLETENESS IN PI-ALGEBRAS

Definition 4 and Theorems 1,2 represent the main result of the paper,
Some auxilliary definitions which are necessary for the probfs and not
easily available are given in the Appendix (mumbered Al1-A7) together with
relevant references to the literature, |

Definition 1.

Let P be a cyclically ordered set and aeP, beP,
Let a precede b. We say that b is the direct successor of a iff:

1) (a,b,c)e¥ (for the definition of and other symbols see the
appendix).

2) in the set P\(a), b is the first element in 1le(a)
3) in the set P\(b), a is the last element of 119(b)
Then we write a<b. By analogy, we define b}a (b is the direct predecessor
of a).

The familiar cyclic negation (¥=v+l mod k) which was used in previous
work can be substantially generalised.

Definition 2. (a cyclic shift function)

Let P be an arbitrary set. If there exists a cyclical order of the
set P such that every peP has a direct successor q, and q is the direct
predecessor of p then we define the cyclic shift function corresponding
to that cyclical ordering as a mapping such that;
1)$: PP
2) for every peP it holds that p =% ¢ (p).

The composition of mappings is defined in the usual way as

s = ¢ ¢XN L per
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Definition 3. (Distance)

Let Py» PgPand ¢ be a cyclic shift function. Then the distance d of
the elements Pys Py with respect to{} is the least ordinal such that
- s 8
¢fpl) = p,. We write © (pi’ pz).
Lemma 1:
Let @ be a cyclical ordering and @* its inverse. If P, is the direct
. *
L * »
successor of p, in ¢* (i.e. Py = P,), then p,%p,- O
Proof: J*(pl,pg) = J(p,, p;) = O from Def.l and Lemma A.7 ™
Lemma 2: |
is an automorphism. in}
Proof: If is not a monomorphism, then for some Py # Py ¢(pl) = Py and
¢(pk) z Pys i.e. pi,-ﬁpj, pk._{,pj. Therefore J(pi, pj) T J(‘pk, pj) =0
which is possible only if P; = Py
If ¢ is not an epimorphism, then ¢ (x) # Py is true for every xeP. Let

us take (pr, P:s ps)e@ and (ps, pj, pr)e #* such that pjé P and

J
*
. 1 . .
p:i =P, From Lemma pr-': pj L
Definition 4. (Definition of Pi-algebra)

Let Pi be an algebra such that
Pi =<P, $.0.,8B, > where

a) P is its carrier

b) ¢ is a cyclic shift function

c) <G2©) is an arbitrary groupoid with zero 26) without divisors of
the zero, and with the absorbing element %) such that

a =pPha =a for every peP, p # z

"0 ® PP P 24 2, y PP P 7 2o

d) {G,0) is an arbitrary groupoid with the unit eq

e) {GyH) is an arbitrary groupoid with a right zero 2 and a right
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unit e

fra) -
In order to have a more succinct way of writing let us further intro-~

duce the following symbols:
i=n
i?l{xl'}s x1$x2$ "3¢ éxn , n finite

n n
Analogically we introduce the symbols (3 , B for repeated operations
izl i=1
& , H respectively,
More generally, we shall write e.g. @X for repeated operations

xeS
of taking all elements from an arbitrary set S.

Let further é{ﬁv)} v e P WP B )
where £ is the least ordinal such that ¢E (z{e)kz(@). o
@[{4:“@)}% “(v]] is the abbreviation for .
vs()P... 6 TS P ...

Definition 5:

dQy  iff v =se

q,a‘(v)=

z&) iff v £0¢€

Lemma 3:

A constant function is given by

8. -
o ® ¢[914(+v)}] where m= 6(za) +S,9)s o EF- ul
Proof: From Lemma 2 it follows that there will be one and only

one function ¢ (v) = z{e} for any value of v. Consequenfly, from the

property of the zero, @{tja“(v)}z Z o However, ¢ Mz @) )2e, W

Lemma 4:
L %
v (V) = (§)[{e(9)} - #(v)]

where ¢* is an inverse cyclic shift function obtained by the substitution
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of {* (see Def. AB) for & in Def.2. U

Proof: The expression @[ {6 (v)P- ¢¥ (v)] will assume the value
?@ for all argument-values for which one of the functions v, ¢(v),¢ %v),
- +
s veees 7 l(v), o l(v), ... assumes zg, . However, for that

.
Z the function@I{ 6 (v}} - fbv(v)]:a'(@)
72

, because ¢V (v) has been removed and there is always exactly one

argument-value for which ¢V (v)= 78

of the remaining functions to assume the value a &) for that particular
‘ ¢
v *
value, ¢ (p.d=z . That ¢V (v) = follows from ¢ (z, =e_ .

Lemma 5:

Any function f(vl, Vos eeees vn) of a many-valued logic system may be

expressed by means of a formula of the follqwing type:

§ &% 8 f=n
£ 3500,V ) = ®¢’2(¢ 2 (eHme T [’% *Paz‘ (vg) 1)

V(f(al,ag,. ‘ap )|f¢e(@) )

where 61 = (a{m,emm ), 62 = (z(m),e(@)), and 5(3(@)’2(93))= 8. -

ERT——— e

e e st

Remark: In the above formula ® means the repeated operation
Vi)
for such substitutions Qys @py ey Bps aj eP, of the variables Vis Voo
A for which £ # e .

2.

The distance 6; is the inverse of the distance 62.

Proof: Any many-valued function depending at least formally on n
variables may be viewed as a family of all (n+l)- tuples of the type

(al, By eees @3 b), where beP. Here, {al, Ay eees an))\ are the indi-
vidual substitutions of the variables Vis Vps sees Vo causing f(vl, Vs
ceny vn) = bJ\ . For the substitution <al, dps een an>;\ the respective
set of characteristic functions (ll!a (vl), Tbag(vz), cens Wan(vn)> A

1
will assume the value a? @) . and %@) for other substitutions. Therefore

<¢al(vl)@ \baz(v2)$ @ \ban (vn)>>‘ z a{é.» when substituted



<al, a5, +ens aﬂ)& and Z (0 otherwise.

4

Further, ¢ ['€>{ wag (gi)} 1= ?r&y for that substitution and
¢ l(zw) ) = Z(g). otherwise.
If then we form an expression of the type

é
c BE ¢ 1 [ @ ¥ (v{))\ then owing to the existence of
Y 61

e(r, @ the expression will assume the value b for that substitution, and
4 otherwise if we set ¢ = b, . If we add ghe transformation of the
(8 Y A s ‘

constant, we obtain instead of by the value ¢ (b}i ). This value will be

transformed back to bJ\ after the application of the last transformation

¢ (2g) * e

From the properties of ® it follows, that the whole formula will assume
the same values b, # Z(@) as the function f(vl, Vos eees vn) for each
respective substitution (‘al, By coes anx . V n
Theorem 1:

Any Pi-algebra is functionally complete if the following condition
is satisfied:

(z(Q) ,z{m’ ) = {l«’ where 51 = (a(é) > ©(m) ).

Proof: It easily follows from Lemmata 3,4,5.
Theorem 2:

If the right zero Z(rm ) is also the zero and the right unit e (rH )

is also the unit of the groupoid <Gj,E), then the following holds:

5, &ky &, %=n 8 8% gm 8
2 1 - 2 2 1
e “(6 (e M {2?1 waz SRR L0 UG )m{‘g S CRCIIND

e '
Yi+ €1y’ V({'+e(®))
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Proof: The functions *a (vﬁ) can assume only values z (9> a(é )

2
Thus in this case B will behave after the transformation 4} in

the same way as(} before the transformation.
It is obvious that the majority of the theorems from 19],1161, as

well as the classification of the Pi-algebras given in IS] remain valid

for the generalisations given in this paper.

4. CONCLUSION

The aim of this paper is to provide some sufficient conditions for

cunctional completeness of a constructive character, which can be used

for the design of complete sets of functors to suit the requirements of
various applications.

It has been noted that the general conditions of Rosenberg are par-
ticularly useful in establishing negative results [23]but in order to
obtain positive results in an easy way some more constructive methods have
to be developed.

It should be noted that the conditions given in this paper can also
be used for establishing positive results concerning functional com-
pleteness in algebraic systems. The groupoids of the complete Pi-algebra
can be 'collapsed' in various ways into a single functor which makes it

possible to obtain results similar to that of IQQ].
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APPENDIX

We shall give here some definitions and theorems used in this paper.
The proofs can be found in the literature quoted.

Definition Al: (Cech [25] p.3uw)

A cyclical ordering of a set P is a subset ¢ of the set PxPxP sat-

isfying the following conditions:

1) (a,b,c)é¥ D(b,c,a)e@ A
2) (a,b,c)é¥ and (b,a,c)é€ never hold simultaneously
3) if neither (a,b,c)é€ nor (b,a,c)€? , then two of the elements

a,b,c are equal

4) (a,b,e)e? , (a,c,d)E€ > (a,b,d)eX&

Lemma A2:

Let P be a cyclically ordered set and let a P. If x&€P\(a),
ye »F\(a), we say that x precedes y if and only if (a,x,y)E¥ . Then we
shall write x<y. This defines an ordering of the set P\(a), which will
be denoted U, (a). For the proof that this is an ordering see Cech [25]

¢

p.34,

Lemma A3:

Let a€P and let there be given an ordering of the set E’\(a). Then
there is exactly one cyclical ordering & of the set P such that the given
ordering of the set P\(a) coincides with 'u?(a).

Proof: see Cech [29), p.35
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Definition A4:

Let P be a cyclically ordered set and let a&P, beP, af#P. Denote by
J? (a,b) the set of all x such that (a,x,b)é’q . This set is called an
interval of the set P, with beginning a and end b.

Definition AS:

Let G(*)=<P,*> be a groupoid with the domain P and the groupoid
* * '3 . * - .
operation #, Then the left zero element zl(*) is defined by zl(*) D zl(*),
- * s }' : . » - -
a left unit element el(*) is defined by el(*)‘p p; iff the equalities hold
k . e * :
for every peP., A left absorbing element al(*) is defined by al(*) P72y (x)
if it holds for some peP. By analogy, the right zero Z(%) is defined by
= * . » * hd I3 . - .
zr(*) P zr(*) Similarly we can define a right unit or a right absorbing
element. The zero z(*) (or a unit, an absorbing element) is both, the
left zero (left unit, a left absorbing element) and the right zero (a
right unit, a right absorbing element).

Definition A6:

Let ¢ be a cyclical ordering of a set P. Define @¢* C PxPxP as follows:
(a,b,c) g @* <> (c,b,a)G?
Then @¢* is the inverse cyclical ordering to €.
Lemma A7:
Let @, @* be two mutually inverse cyclical orderings of P. Then
J@*(a,ka@ (b,a), where é,bsP, a#b.
A more detailed exposition of cyclically ordered spaces (including

infinite topological spaces) is given in [26] , pp. 29u4-312.
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Abstract

This paper describes an application of fuzzy logic in
designing controllers for industrial plants. In such cases
where a linguistic control protocol is easily derivable or
exists in the mind of a skilled operator a Fuzzy Logic can be
used to synthesize this protocol. Fuzzy logic transforms
‘the imprecise linguistic statements into a precise‘numerical
calculus which can be used by an on-line computer. The method
has been applied with success to pilot scale plants as well as
in a practical industrial situation. The merits of this method
in its uscfulness to control engineering are discussed.

Fuzzy logic is able to tackle scts of linguistic statoments

which describe the interrelation betwecon sceveral variables.
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This ability could possibly be exploited in other fields
apart from control engineering, which have not beeh
investigated sufficiently because of their unsuitability to
treatment by a precise branch of mathenatics. The work,
therefore, iliustrates the potential for using fuzzy logic
in modelling and in "soft" applications like decision-making.
The success of implementing a fuzzy controllcer depends,
of course, on the availability and reliability of the
linguistic protocol. This cannot always be guaranteed
except in simple cases because the protoceol may be too
complicated for the operator to reproduce in whole and
accurately or it is too difficult to develop because of the
éomplcxity cf the process. The objective or goal that is
to be achieved, however, is often much easier to verbalize
and consequently the need to go beyond a purely éescriptive
approach and explore means by which a prescriptive system

may be implemented presents itself. Possible implementations

of such a method are described.
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1. Introduction

The fact that mathematics as a whole is taken to be
synonymous with precision has caused many scientists and
philosophers to show considerable concern about its lack of
application to real world problems. This concern ariscs
because in iogic as well as in science there is constantly a
gap between theory and the interpretation of results from the
inexact real world. Maﬁy eminent thinkers have contributed
to the discussion on vagueness, occasionally holding human
subjectivity as the culprit.

In an excellent analysis of the subject Black [1] says...
"that with the provision of an adequate symbolism the need is
removed for regarding vagueness as a defect of languaye”.

In his paper he strongly argues that vagueness should not be

b))

equated with subiectivity. Rriefly, his argument may he
summarised by noting that the colour 'Blue', say, is vague but
not subjective since its sensation among all human beinés is
roﬁghly'similar. It is possible to deal witﬁ colour precisely
by considering the e.m. radiation preoducing it but in doing so
the important human sensation of colour, as it happens to be
vague, has to be sacrificed. Furthermore, it may be argued
that vagueness is not a defect of language but also important
‘source of creativity. Analogies are extremely important to
creative thinking and vagueness plays a dominant role in such

thought process.
Black's motivation to symbolise vagueness appears to be at
the back of all investigations of "Deviant Logics" [2]. An

important contribution in the past 10 years has been that of
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- Zadeh's fuzzy-set—theory and fuzzy-logaic [3]. In his recent
writings Zadeh [4,5] states clearly his motivation which is to
use fuzzy scts to symbolise Approximate Reasoning (AR).

Whereas there are many applications of fuzzy-set-theory, this
paper describes one of the first results in the application of
AR and linguistic synthesis.

1.1. An Outline of the’Pape;'s Content: The intention in this
paper is to review the whole program of investigation concerning
the application of Fuzzy~logic to controller design and to
analyse the findings in order to offer insightful comments and
conclusions. The original work in this program was done in
early 1974 [6] and first published later that year [7,8]. Thisg
was the control of a pilot scale steam-engine using fuzzy-logic
to interpret linguistic rules which gqualitatively express the

in the next

Cy

control strategy. This work is briefly reviewe
secticn of this paper.

Since the publication of the above work several researchers,
elsewhere have also implemented the approach using different
pilot scale plants. This together with the continuing work as
part of this programme have produced results which throw more
light on the usefulness of applying fuzzy-logic to linguistic
synthesis. Section 3 below offers comments on some of the key
findings of these studies.

One of the comments that has been made about fuzzy-logic is
that in its present form it is essentially descriptive and does
not offer a prescriptive approach to reasoning. - In the first
place, it should be noted that fuzzy~logic, like any other form
of logic, can only be a system for inferring consequences from
previously stated premises and only from these premises. A

prescriptive system is possible, however, if a hierarchical
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~decision making approach ié used so that the strategy at a
lower level is derived as a consequence of a description at
a higher level. Two early implementations of such a
‘prescriptive method (some might term this a learning or an
adaptive approach) are discussed in section 4 of this paper.
To conclude this paper the last section cxamines the future
trend in this field in the iight of experience being gained

from current investigations described here.

2. An Experiment in Linguistic Synthesis

2.1. A Brief Review of fuzzy-logic; The point of view adopted
here is that the variables are equated to universes of discourse
which are non-fuzzy sets. These variables take on specific
linguistic values. These linguisti¢ values are expressed as

fuzzy subsets of the universes.

Given a subset A of X (Ac¢X) A can be represented by a
characteristic function: XA: x+{0,1}. If the above mapping is

from X to a closed interval [0,1] then we have a fuzzy subset.

-

Thus if A were a fuzzy subset of X it could be represented byv
a membership function: My X~+[0,1].

Note that X is a non~fuzzy support set of a universe of
‘discourse, say, height of people. A can then be equated to a
linguistic value such as tall people. Fig. 1 shows two
linguistic values Al and A2 and their logical combinations

A_AR A_VA where:

17 Spftpr AyVayi
is formed by taking (l--uA ) as membership value at each
2

element of support set,

A

o

2

A AA_ is formed by taking min (y, ,u, )} at each element
17772 Ay A,
of support set, and

A,VA, is formed by taking max {(u, ,pi, ) at cach element
1772 A, "7A,

~E avrresyd oo
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It is in the definitién of implication that this logic may
be found to differ from other logics. Givewn AfB (If A then B),
then it can happen that A ;né B are linguistic values of two
disparate universes of support say X and Y. Note that here the
implication is between individual values and not the underlying
variables. Thus the relation R between A and B is a fuzzy
subset of the universe of support X x Y, the croés-product of
X and Y. Myt X x y=[0,1]. uR(x x y) is related to pA(x} and

| uB(y) {(in the present application) by the following:

upix x ¥) = min (1, (x), v(¥)).

If the relation R represents a "nested" implication (i.e.
If A then (If B then C) or A+B~»(C), then R will have a correspondin
higher order cross-product support set.

Now if some relation R between A and B is known and so is
some value A! then the idea is to infer B' from R and A';
BY = A! oR, where A‘ is composed with R. AThis has the effect of
reducing the dimensionality of the support set of R to that of B'.
In this work, the compositional rule of inferencé used to relate
Mp1 to Vg and Hal is:

Hp1 (y) = mzx min (uA1(x), uR(X X y))e.

These definitions are themselves a matter of much discussion
but that concern is outside the scope of this paper. The setting
up of relations R from stated implications between fuzzy values
and the subsequent use of the rule of inference are the chief
mechanism used in decision making in the application described .
below."

2.2 Application to fuzzy-controllers: As stated earlier the

linguistic synthesis approach was initially applied to control
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a pilot scale steam~engine, a more detailed description of
which is given elsewhere [6,7,8]. A concise summary of this
work is presented here. The overall control system is shown
in figﬁre 2. One aspect of control in this system is the
regulation of pressure in the boiler around a prescribed
set-point. The control is achieved by measuring the pressure
at regular intervals and inferring from this the heat setting
to be used during that interval. The essence of this work is
simply that if an experienced operator can provide the protocol
for achieving such a control in qualitative linguistic terms,
then fuzzy-logic as described above can be used to implement
succeésfully this strategy.

The protocol obtained from the operator in this case
considers pressure error (PE) and change in the pressure error

(CPE} to infer the amount of change in the heat.(HC). The

protocol consists of a set of rules in terms of specific
linguistic values of these variables and is shown in figure 3%,
Now it can be seen that these rules are in the form ;f
If...Then statements (implications) and thus, from above, each
rule‘i will +translate into a relation Ri' The overall protocol

is then a relation R formed by 'oring' together the Ri's:

R=R, VR

l 2.‘lvRi..0VRn.

Let us say now that each rule Ri represents an implication

Ai¢Bi+Ci. The decision making algorithm that is implemented

*The abbreviations used for these linguistic values here are:
ZE-zero; PZ-positive zero; PS-positive small, PM-positive medium;
PB~positive big and the same for negative values NZ,NS,NM and NB.

Change in Error negative is taken as movement towards set-point

and positive as away from set-point.
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contains two phases:
a. The initial setting up phase when the protocol R is
 formed from two sets of data:
(i) The individual linguistic values Ai’ Bi' Ci given
as fuzzy subsets.
' (ii) The rules as in fig. 3 which specify the actual

combination of these values to form each Ri'

" b. The decision making phase is invoked at each sampling
instant during run~time with the exact measured values
A' and B! supplied to it. This phase then is nothing
but the use of compositional rule of inference to derive

C! as follows:

¢! = A'o(B'oR).

Note that A', B! can be non-fuzzy, whereas since C! is
a fuzzy subset of the set of all possible actions, a procedure
'is required to determine the actual action to be taken from
the knowledge of C!. Also there is a certain advantage in
deferring the computation of R until the second phase. Because
then this provides a means of altering the control strategy
on-line by altering the data structures containing the rules
during run-time. However, what need concern us at present
is the results obtained from the application of this method to
the pilot scale plan. In repeated trials it was found that
the results compared favourably with those from applying
classical methods from control engineering practice (i.e. 2
or 3 term controllers).l

3. Comments on Fuzzy-logic Controller Studies

Two main conclusions have been drawn from this work.
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First, that the results vindicate the approach advocated by
Zadeh and demonstrate its potential. Second, it can be
asserted that the method can easily be applied to many
practiéal situations. This assertion is supported by
considering a practical instance, that of cement kiln operation,
in which a similar control protocol obtains. In a book c¢n
cement kilns, Peray and Waddéll [9] list a collection of rules
for controlling @ kiln. Examples of these rules are shown in
figure 4. From this it is immediately apparent that the method
as described, can be used for translating these rules.
Furthermore, this method has also been tested on plants such as
batch chemical reactors, heat-exchangers and so on. Some key
feature emerging from these studies are mentioned here for the
sake of interest.
In many of the studies, rules exactly as those given in
fig. 3 are used with only minor changes. This is not
“surprising as the rules indicate the relationship between
error, change in error and control action that exists in most
dynamical plants. This relation is mainly one of monotonicity
between the outputs of a piant and the input applied to it.
What is more of interest is that in most studies it is found
that this form of controller is far less sensative to parameter
changes wifhin the plant than the classical 2-term controller.
At this stage only a qualitative explanation can be offered
‘for this. It appears that the former is a reasonable controller
as it relies on the underlying relationships between the plant
outputs and inputs whereas the latter is a pedantic controller .
in which the action is computed as a linear combination of the
measurements and thus more susceptible to parameter changes.

It is the first conclusion above, however, which is more
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- important. Approximate Reasoning approach outlined here is
- obviously applicable to other areas as well. The one that
has been considered is the design of traffic signal contfollers.
Application to more obvious areas of decision makingvin complex
and humanistic system will no doubt be attempted in future.
If the method described above is applied to these other areas
then the likely sources of difficulties to be encountercd éan
be attributed’to one main factor. This is that the quality of
~decision is only as good as the relation R from which it is
inferred. R in turn is affected by three factors.

First, it is affected by the set of rules in the protocol.
With more complex situations a good protocol is not easy to
derive. A great deal of investigatory effgrt normally referred
to as human factors in control is devoted to exactly such matters.
Unlikely as it may seem, the human being does not always find it
.easy to verbalise his considerations during decision making.
‘The only mitigating factor here is that it is far more difficult
to determine the decision heuristics in a form amenable to
treatment by a branch of precise mathematics than it is to derive
rules for linguistic synthesis.

~Sé¢ond facﬁor affecting the guality of decision (though not
R itself explicitly) is the underlying range of elements in the
support set which provides the context for interpreting the
linguistic rules. This can be illustrated by noting that
'tall people' in a land of pygmies is likely to have the support
set of range of height from 3 to 5 ft. 6in say whereas the more
normal range of ﬁeight may be say from 4ft. to 7ft. Such
considefations are implicit in any application and are equivalént
to what a control engineer would term the gains applied to each

variable.
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Finally, R is affected by the membership values in the
fuzzy subsels defining the linguistic values. This is
perhaps the least important of all the factors because the
'»degree‘of chanée permitted here is limited as too much change
in the membership values of a fuzzy subset iz likely to affect
the linguistic meaning ascribed to it. This is illustrated
in figure 5 in which the effect of given linguistic value
(bold line) ié altered by using a different linguistic value
- (as in a ), increasing the gain thus decreasing the range of
the suppor£ set (as in b) and lastly in a minor way by
adjusting the defining values of the fuzzy subset.

4. A Recipe for a Prescriptive Approach

4.1. An Farly Implementation

As mentioned earlier, the main difficulty that arises is
.that a good decision requires that a good set of rules are
described at the beginning. In any applicetion of reasonable
complexity this is not easy to achieve. Indeed it is quite
possible that for some reason a protocol cannot be obtained at
all. This may be due to the complexity of the plant (e.gq.
ncn-linearitiés) or to the fact that the operator cannot
verbalize his decision process adequately or no consistent
protocol can be found. However, the goal in any application
and a set of assumptions regarding that application can'often
be much easier to state. This fact motivates investigations
into so called learning or adaptive systems.

In the control situation the goal is simply to bring the
output to the set-point and keep it there, the only assumption
being that the plant input and output are monotonically related.
This monotonicity rclation cnables wrong contrel actions to be

corrected. If the output is too high then too much input was
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applied and vice versa and so the proper amount of input
required can usually be inferred backwards ffom the stated
goal. An early attempt at implementing one such prescriptive
systemB@ is described here.

The overall schematic diagram for the control system is
shown in figure 6. The whole system consists of two
heirarchical levels. 'The higher contains the goal which is

effectively a bound within which the output is to be maintained.

. This band, figure 7, is specified by a set of fuzzy rules whose

input is time from the start of control and set point deviation
i.e. the error signal. The output from the rules specify the

changes to be made in the controller. For example:-

a) IF Time is Small AND Exror is Negative Big THEN Desired

change is Big,

b) IF Time is Big AND Error is Positive Zero THEN Desired

-

change is Zero.

The band can therefore be viewed as a set of local pefformance
criteria which the response must satisfy.

The output from these "teaching" rules alters the lower
level éontrol rules appropriately. Since the control rules are
of the form Ai*Biéci' the modification is effected by first
finding the linguistic values Ai and B, which best describe
the plant state for which a changé in action is desired. This
search is simply carried out by a supremum operation over the
range of linguistic values. The action, Ci’ cprresponding to
that control rule is altered by the amount given by the "teaching”
algorithm. If no such rule exists then one is generated.

Figure 8. shows results obtained from applying this scheme.

The tables are a method of displaying all the linguistic rules
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~of the controller. The measurement erxror and change in error
are given on the axes and the éntries indicate the actions
applied. The abbreviations aré as stated in the footnote

on page 5.

The rules in figure 2(a) (without the asterisk) are the
best designed rules of an experienced oﬁerator. Onvépplying
the above procedure the controller converges (i.e. there are
noc more requesﬁs for modification of rules)} by creating the
-extra rules marked with an asterisk. Convergcnce in this
sense means that if the system under gquestion is controllable
within the prescribed band, then the rules will converge to a
solution in a finite number of training steps. On starting
with no rules at all and then applying this procedure,
convergence takes place to the set of rules shown in figure 2(b).
The output trajectory was observed to be marginally better in
the second case. The output response of both these policies
fit the prescribed band. When the band is narrowed then no
convergent policy is found but tﬁe response tends to remain
within the band. This lack of convergence could be attributed
to the 'credit assignment' problem which could be tackled by
the 'bootstrapping' technique. Furthermore, lack of convergence
could also be attributed to the failure in including sufficient
state variables of the plant in the controller.

These modifications are currently being included and are

the subject of further experiments.

4.2, An Alternative Approach

The prescriptive approach described above is very much an

ad hoc implementation. It serves to illustrate what needs to
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be‘done to go beyond a simply Qescriptive csystem. that is
desired is that such an ap?roach should appear naturally in

a suitably improved fuzzy logic theory itself. This is '
especially relevant to the way in which a change demanded by
the higher or 'teaching' algorithm is transmitted to the

lower one.

The general philosophy of this approach is shown in
figure 9. which depicts a very general learning system. The
concept of the membership function enables the set of rules to
be expressed as a data base and the linguistic input value as
input data. All operations that are required are carried out
on this numerical data and are retranslated into a linguistic
outpu£ value or a new set of rules only when it is necessary to
present the results. The idea of the membership function
interfaces between the imprecise heuristics and the exact
numerical data which describes them.

In the early implementation described above the method of
transmitting the change from the higher to the lower algorithm
was achieved by reverting to the linguisﬁic rule text and
substituting certain linguistic names by others or generating
new ones, A much more direct approach W is to perform
numerical operations on the overall relation matrix which describes
the controller according to the change demanded by the teaching
algorithm.

The controller relation matrix, RABC’ is changed as follows.
If for an input A! and B! an action C is required instead of c!
then the relation A'xB!xC! is removed from Rypc. and a new relation
AlxB!xC is included. To effect this the theory of fuzzy logic is
extended to include operations between relation matrices as well

as fuzzy sets,
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'Onde the controller has converged and no more~1earning
takes place it is necessary to develop the new rules as
figure 9. indica 1es. The new relation together with the old
spreadé and the new ones genetated are input to a program
which outputs the sets belongihg to each rule having first

performed a.minimization.

’

This new approach appears more general and direct than
the earlier one and experimental results (with a batch reactor

plant) have so far proved encouraging.

5. Conclusions

The two prescriptive approaches described above are the
first step in an attempt to advance further than a purely
descriptive system using fuzzy-logic theory. If, as is
suggested here, hierarchical statements are a main requirement
of such a theory then this means that fuzzy-logic should have
an auto-descrlptlve property found in multlplg valued loglcs [10].
From the application point of view both a 1earn1ng sxtuatlon
described here as well as decision making in complex systens
are best framed in terms of hierarchical structures. This is
very much the direction in which the theory of fuzzy-légic and
approximate reasoning is likely to go. The work described ih
this paper demonstrates the great potential of applying fuzzy-
logic theory not only to control engineering problems but also

to management and other humanistic systems,
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ABSTRACT

Work done on the implementation of a fuzzy logic
controller in é singlé intersection of two one~way streets
is presented. ,The‘model of the intersection is aescribed
and validated and the use of the theory of fuzzy sets in
constructing a controller based on linguistic control
instructions is introduced. The results obtained froh the
implementation of the fuzzy logic controller are tabulated
agaipst those corresponding to a conventional effective
vehicle~actuated controller. With the performance criterion
being the average delay of vehicles it is shown that the use

of a fuzzy logic controller results in a better performance.
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INTRODUCTION

A considerable amount of work has been done on the problem
of modelling and controlling traffic junctions. Although the

major problem in cities concerns sets of intersections (not

{“ individual ones) any approach to this problem should also include

é sufficient description of the events occuring in any ind;vidual
intersection in the linked or disjoint system under study.
Zadeh‘s pioneering work on fuzzy sets, by which a conceptual
framework is provided for deaiing with problems of vaéueness in
the representation of complex processes, can be of great help to
the task of constructing a controller for such an indi&idual
traffic intersection. Indeed, the étrength of the theory of
fuzzy sets‘lies in its capébility of rendering a powerful
conceptual basis for the modelling and analysis of such processes,
to which the human approach is characterised by rough approximations.
Note that, althbugh stochastic and fuzzy logics can both be
regarded as derived from a probability logic [1], a stochastic
approach would:be methodologically different from the‘fuézy
discipline which has been used here. It seems, therefore, that
the fuzzy rather than the‘stochastic approach should be used as the
: domain forwthe implementation of heuristics. ’
Previous work reported in the literature (e.g. [2], (31, [4],
[5]) has éhown the merits of the theory of fuzzy sets when applied
to the design of controllers for realfdynamié plants, industrial
processes etc. In this study, the system is a traffic junction
and the problem of its control is considered as a classical
example of non-programmed decision making, i.e. decision making
characterised by the lack of well specified analytical means for
c0p£ng with a particular problem. Thus a linguistic control

algorithm is synthesized capable of dealing with a continuously



SI1)is2

reproduced decision making situation. The starting point
is an adequate (though gqualitative) knowledgé of the system
and a pfotocol-of control instructions used by a human
operator. . A fuzzy set theoretic representation of theée
instructions (which we call "a fuzzy logic controller”) was
tried as an answver té the control modelling problem, which
gave very satisfactory results,

The work ddne on the construction of the model of
the system and the implementation of the fuzzy logic
controller is presented below. In order to validate the
" model a fixed-cycle controller was also simulated. The
average delays of the vehicles resulted from the implementation
of the fuzzy logic controller were compared to those caused
by an efficient vehicle-actuated one. The results obtained
show that tﬁe performance of the system is better under the

fuzzy logic controller.

THE MODEL

The major assumption concerning the model is that
the arrivals>of vehicles at the intersection are considered
as being random. Note that this assumption affects not
only the truthfulness of the model but the selection of the
éontrol policies as well. The cycle is divided into two
periods of "effective red" and "effective green" for
each phase, the first corresponding to the halted traffic
and the second to the traffic having the right of way.
A total lost time of 10 secondé per cycle is assumed.

Vehicles leave the queue at a constant rate equal to the
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saturation flow during the effective green (see [6], [7]
for definitions). The saturation flow equals 3600 vehicles
per hour at both arms. There is no turning traffic.

For each successive time unit a pseudo random number

**-7 is generated and compared to some fixed quantity, which is

equal to the mean rate of arrivals. Thus the arrival of g
vehicle is decided. Let
1 if a vehicle arrived during the nth unit interval

q, = {
O otherwise

If QG denotes the number of vehicles not cleared during
the previous effective green period. of a phase, then the gueue
Qn at the nth time-unit after the beginning of the effective red
of that phase would be:

n
Q. =0 + X gn
nlwl 1
and the total waiting time of the vehicles in the queue would

be:

Q. +
n'R n l G R

n
D = z
2:
‘Let s be the saturation flow, i.e. the rate at which
vehicles are cleared during the effective‘green period.
At the nth time unit after the beginning of the effective
green, the number of vehicles not yet cleared would be:
n .
Q = z.(Q, + z g - s.n)
n Ronp=1 ™
where QR is the queue which was built up during the previous
effective red period of the phase, and z is equal to 1 when

multiplied by a non-negative quantity and O otherwise.
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These vehicles have been subjected to a delay:-

n
n 1 ,
D = I z-(Q, +. I q - Sen,)
n,G nl=l R n2=l ) 1

“Thus duriﬁg a cycle, the total delay experienced by

vehicles travelling along one arm of the intersection would

be:-

where D ; D are the delays during R and G, i.e. the
R,R G,G

whole effective red and green periods respectively.

Finally the average delay per vehicle would be:-~

D

R+G

I g
n=1 n

d =

The model just described is gquite simple in comparison
to some more sophisticated ones (see, for example, [8], [9}).
yet it suffices for the purpose of this work. A measure of
its reliability was obtained by using a fixed-cycle controller
which was implemented to the system. The system was subjected
to a wide range of averages of random vehicles arrivals.
Each time it was run for 7260 simulated seconds and the
corresponding average delay per vehicle was calculated.
Results of the calculations, together with the expected
averageAdelays, are gi#en in Table 1. The expected ones
have been obtained from the following formula (see [6]):

' 2 i/

1oy 2 - 5
g = S-1) . X - 0.65( &) x2¥50)

2 (1-AX) 24 (1-%) q
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]

where d average delay per vehicle on the particular arm

i

cycle time
A= proportion of ‘the cycle which is effective green
for the phase under consideration ( =g/c)

flow

o]
i

s = saturation flow

X = degree of saturation (g/As)

This formula gives the average delay of vehicleé arriving
at random at an intersection controlled by a fixed cycle
controller. Its first two terms have a theoretical meaning
while the last one is purely empirical. Table 1 shows a fair
agreement between the calculated delays and those obtained from
the above formula, thus providing a validation of the model.

The results of Table 1 actualiy correspond ﬁo optimum
settings, i,e. optimum cycle and effective green ﬁimes for the

respective flow rates according to:

_ "1.5L + 5
S = 1 - Y

- Y ‘
g, = _1 -
1 T (co L)
y

92 < §£ (co-L)
where ’ Gy = optimum cycie time
g = effective green time
y =4a/s
Y = yl + y2 | |
L, = total lost time per cycle (10 seconds)

It should be noted that the delays of Table 1 correspond

to random arrivals having fixed averages. In other words,
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should the average rates of arrivals be different from those

for which eétimum settings have been found and used forx the
cont;ol of the intersection, the resulting delayé would also

'bé different from those of Table 1. The use of timers, for

tuning the controller in order to adjust iﬁs settings to tﬁe daily

flow pattern, would not be an easy task. Consequently the

'controlled by

actual &elays occﬁring ih any intersection
fixed-cycle controllers would be by far in excess of those
shown in Table 1, especially in cases of heavy traffic.

In the case of vehicle actuated controllers, the results
of Table 1 correspond to those wﬁich should be expected with
aﬁ efficient vehicle actuated installation [7]. That is, a
vehicle actuated controller with speed timing or with a low
fixed extention operation would.result in delays as those of
Table 1 for the respective flow rates. These delays were the
basis for the comparison between vehicle actuated controllers
and the fuizy logic one (a fixed-cycle controller for a
single intersection is scarcely worthy of comparison).

The system.control process is shown in Figure 1. The
intervention of the controller takes place every 10 seconds
during each phase;s effective green period; the first
intervention taking place just after the first 7 seconds of the
period. At each intervention the length of the extension
of the effective green time for the phase having the right
of way is decided. Information concerning the flow pattern
is collected by detection pads, which, it is assumed, have
been installéd before the traffic lights in both arms of
the intersection. The role of the detection pads is very
important, as will be made clear in the sequel. It was

assumed for the calculations that the flow pattern, as detected
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at the pads, is preserved throughouﬁ the periocd after each
intervention for the phase having the right of way. The
distance between the pads and the stop lines is sufficient
for the controller to be informed about the arrivals of
vehicles in both arms of the intersection during the next
11% seconds, assuming that the effective green ends at thet
middle of the 3 secondé‘amber period.

Thus vehicle i passing over the detectors is registered
in the following way: Its speed vy is calculated. Assuming
that its speed is preserved constant during its trip from
the detectofs to the junction, vehicle'i will be at the
"eritical point" in (L/vi-l.s secs) time (see Figure 2).

The "critical point" is the pdint where, should the lights
turn to amber, it would be possible for.the vehicle just to

pass. Let

N, =L/v, - 1.5 secs
i i , ,

be the number of seconds required for the vehicle to arri§e
at the critical pdint. Ni indicates the position of

vehicle i in the flow pattern array for the next 10 seconds
interval. vihe control input parameters are two continuously
updated arrays corresponding to the halted traffic and the

traffic having the right of way.

THE FUZZY LOGIC CONTROLLER

In order to make our exposition self-contained, some
of the basic definitions of the theory of fuzzy sets([10], [11])
which were used to modgl the control algorithm, aré given below.
A fuzzy set F of a Universe of Discourse U={x} is defined

as a mapping pF(x):U+[O,l] by which each x is assigned a number in



e —e————

- : 5-].’//57

[0,1] indicating the extent to which x has the attribute F.'AThus,
if x is the number of vehiélés in a queue, then "small" may be

considered as a particular value of the fuzzy variable "queue“'and

.each x is assigned a number uSMALL(x) e [0,1] which indicates the

extent to which that x is considered to be small.
Given the fuzzy sets A, B or U, the basic operations on
A, B are: -
(i) The complement A of A, defined by
(ii) The union AUB of A and B, defined by
Mapg (X) = max {u, (x) ,up(x)}
(iii) The intersection ANB of A and B, defined by

Hang (X) = min {y, (x) ,»uB(x) }

A fuzzy relation R from ﬁﬁ{X} to v={y} is a fuzzy set on
the;Cartesian product UxV, charactérised by a funbtion‘uR(x,y),
by which each pair (x,y) is assigned a number in [b,l]-indiéating
the extent'to which the relation R is true for (x,y)f There are
several ways of constructing uR(x,y). The one used heré-will be
seen later. |

Finélly given a fuzzy relation R from U to V and a fuzzy
set A on U, a fuézy se£ B on V is induced, given by the compositional
rule of inference: |

B = AOR.
or

uB(y) = m:x'{mih{uR(XrY)rUA(X)}}

A heuristic approach to the control problem was employed,
which resulted in a set of linguiétic control statements. The
above basic ideas of the theory of fuzzy sets were used for the

quantitative interpretation of these instructions as well as the

decision-making process.



9 s1/ise

The fuzzy control instructions (see tppendix for a complete

set) are of the form:

If T = medium é
and A= mt(medium)
and Q =‘lt(small)
Then EA; medium
Else
If T = long
and A = mt(many)
and Q = lt(medium)
'ihen E = long
Else etc. | :

|
where T = the fuzzy variable "time", which is assigned values
like "very short", "short", "medium" etc.

A = the fuzzy variable "arrivals" i.e. the number of
vehicles arriying at the arm having the right of
way,‘which may be assigned values like "many",
"more than a few" etc. ”

Q = the fuzzy variable "queue", which{is assigned
-values like "any", "less than smail" etc.

E = the fuzzy variable "extension", wﬁich is identical

to "time"

The terms "medium", "more than medium”, "less than small” etc.

are labels of fuzzy sets defined on the relevant univerées of
discourse T,A,Q,E. Tables 2, 3 and 4 show the fuzzy sets used

in this application. Further to the above basic operations, in
this‘application we have introduced the operators "mt" and "1t",
standing for "more than" and "less than" respeciively. These are
defined as follows: if # is a fuzzy set defined on U = {x;}, up(x;)

is its grade of membership function and X is the element of U for which
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. and mt (A)
pA(xi) is maximum, then 1lt(A)+tare fuzzy sets defined on U such that:

= 0 for x,>x

ult(A) (Xi) o

= ] - uA(xi) for xi<xo

umt(A)(xi) = 0 for X5 2%
= 1w~iuA(xi) for xi>xo

The result of these operations on‘the fuzzy sets of Tables 3 and
4 above is shown in Tables 5 and 6.
Obviously

1t(A) or mt(A) = not(a)

1t(A) and Qt(A) =0
or

max{ult(A)(xi},umt(Aj(xi)}=l—uA(xi)

minduy ) (%5) el ) (%3)1 =0

Note that if a fuzzy assignment like "A = small" is
characterised by the poof content of fhe information conveyed,
a fuzzy assignment like "A = less than small" is conveying eﬁen
less information. In 6ther words, fuzzy assignmehts like

"A = less than small" are used whenever the grade of fuzziness is

high.

"Any" is considered as a fuzzy set with all the elements of
its universe of discourse been assigned a grade of membership
equal to 1. !

A total of 25 rules were used (5 for each(intervention).
Every rule is a fugzy relation between the inputs T, A, Q.
and the output E. The connectives "and" and "else" are interpreted
as the operators "min" and "max" respectively._(Thus:—
| T = very short

and A

i

mt {(none)

anA .



is a fuzzy phrase P (see [12] ydefined on the universe of

discourse TxAxQ with grades of membership function

up (t,a,q) =nin{y (£) (@)}

v.short mt(none)(a)'uany

,‘.The fuzzy implication "if P then E = very short" is also a

fuzzy phrase R defined on TxAxXQxE with grades of membership function

"

uR(t.a,q,e)=mir'1{u (t) ,u (q) ,u (e)}

v.short mt(none)(a)pany v.short

Finally two or more fuzzy implications R,S...., connected by
"else" form a fuzzy clause C defined on TxAxXQxE with grades of

membership function
UC (tra:c;hej=maX{UR(tra:QIe) cUS (t,a,qg,e),.. .1

In this application, since each fuzzy rule is represented
by a 4~dimensional'matrix, the fuzzy aigorithm employed at each
intervention for deciding the control action is represented by the
union of 5 such matrices, as five rules operate at each intervention.
25(535).rules given in the appendix thus provide for a maximum
of 5 intervenﬁions (each consisting of 5 rules) taking place at
7th, 17th, 27th, 37th and 47th second. Thus the maximum possible
effective green time is 57 seconds. At each intervention the
5 rules are invoked in the manner described below 10 times (i.e.
for each of the next 10 seconds). Note that, as thé detecting
pads are sufficiently far away from the junction, at each
intervention, data is available for each of the next lo‘seconds.
Consider now the (ti,aj,ak,el) entry of the matrix Cz, corresponding
to the algorithm used at the 2nd intervention of the controller,

where:
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t. = 8 {i.e. we consider the next 8 seconds)

a. = 4 (i.e. 4‘vehicles will cross the critical
point if no chahge of the current state
of the system occurs during the next 8
seconds) ‘

q =5 (i.e. 5 vehicles gueue will build up if no
change of the current state of the system
occurs during the next 8 seconds}.

e, =8 (i.e. the extention given to the present

state of the system is 8 seconds)

The first control statement R, for the second intervention

1
(see appendix) is:
If T = very short
and A = mt (none)
and Q = any
then E = very short
From Tables 2, 5,6 we have:
Yy.short (8) = 0‘0'
umt(none)(4) = 1.0
uany(s) = 1.0
Thus
uRl(8'4'5'8) = min{uv.short(a)'u mt(noné)(4)’
“any(s)' uv.short(s)}

min{o;l.o'l.o,O} = 0 -~

Similarly we find
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short(s)'umt(a’few)(4)’
(8)}

(8,4,5,8)
2

min{yu

il

MR
ult(v.short)(s)’ushort

= min{0,.9,.5,0} =0

i

(8)}

UR3(8:405:8)

n1t(v.short)(5)'um,edium

= min{0,.8,.5,0} = 0O

UR4(8r4f5r8) min{ulong(fi) U

L]

) (4)l

mt (medium

ult(v.short)(5)'“long(8)}
= min{.5,.5,.5,.5} = .5

uR5(8:4:5;8) = mih{u (8) ,u

mt(many)(é)'
(8)}

v.long
u1t(short)(5)'“v.long

= min{.5,0,1,.5} = O

Thus the (ti,aj,qk;el) entry of matrix C2 is

ucz(ti,aj,qk,el) = max{0,0,0,.5,0} = .5

THE PROCEDURE FOR DECIDING THE CONTROL ACTION

Having determined the entries of the matrix corresponding
to the algorithm for each intervention, the process of inferring
- the control action is carried out as follows.
For each successive time unit (=1 second) for the next 10 seconc
data concerning vehicles crossing the critical point and vehicles
added to the gueue are used as inputs to the algorithm matrix
in use. The corresponding entry of the matrix is thus determined.

This entry is a measure of the confidence with which the
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algorithm may be applied, for the correspohding data. Obviously,
that extension will be selected which corresponds to the maximum
degree of confidence. In othér‘words,'fuzzy predictive

decisioh making implies that, that action is selected which

" minimizes fuzziness. Thus,given a set of fuzzy rules choose the

one which is provided for coping with conditions as similgr

to the actual ones as possible. And, given a set of alternative
actual conditions, consider those which are as similar to the
conditions, for which the algorithm provides, as possible.

The explicit description of the procedure for deciding
the control action is given below, by means of an example. Thus
we consider the controller's 2nd inéervention. Arm N-S has the
right of way. There are 5 vehicles queued at E-W arm. Data,
concerning number of vehicles crossing the c:itical point
(N-S traffic) and queued (E-W traffic) at each successive time
unit during the next 10 seconds, is summarized in arrays a and

o' respectively.

a=(0 1 0 1 1 1 1 0 0 1)
a=(0 1 0 0 1.0 0 1 0 0)

From o, o' arrays B, B' are constructed

g=(O0 1 1 2 3 4 5 5 5 6)
B'=(5 6 6 6 7 7 7 8 8 8)

as follows: if the ith elements of a and B are ai, bi respectively,

it is

and if the ith elements of a' and 8' are ai, bi respectively,

it is
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- where Q is the present queue at E-W arm. For example, if no
changé of the current state of the system occurs during the next
6 seconds, it is seen (from B and B') that 4 vehicles willicross
the critical point and there will be a total of 7 vehicles in

the queve at E-W arm after 6 seconds from now. ’

The ith elements of arrays B, B'; i=l,...,10, determiﬁe
the appropriate entry of the algorithm matrix Cz, which indicates
the applicability of the algorithm to the situation described
by these elements of the arrays. Thus, for t=1l second (i.e.
¢onsidering an extension of 1 second) we have that no vehicle
will cross the criticaltpoinf (first element of array B) and that the
gueue will remain the same (5 vehicles, first element of array R').
It is easy to show that the rules of the algorithm are assigned
the.grade 0, and, consequently, the algorithm is assigned the
gradevo for t=1 second. .The results have been summarized in
Table 7. Obviously, the controller will select the extension
of 10 seconds. Thus, the state of the system will remain the
Same‘for the next 10 seconds and the above procedure will be
repeated (with new B and B') at the end of the 10 seconds
period. If the extension given to the present state of the
system were less than 10 segonds, the state of the system
would change at the end of the extension period.

Note that if all the entries of the last row of Table 7
were less than 0.5, no extension would be given and the state
of the system (i.e. the phase) would be immediately changed.

Finally, if the maximum of the entries of the last row
were not unique, i.e. if two or more alternative extension

periods were indicated, then the maximum of these alternative

extension periods would be selected. Of course, some other rule
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might be used instead (e.g. one giving the minimum extension
period or the median or one randomly selected among these
alternatives). For this,lhowever, another control algorithm
would be required in the place of the one used in this
implication, which was based on the rule giving the maximum

extension period. « g

RESULTS AND FINAL REMARKS

Because 0of the random nature of the arriﬁals assumed,
many runs of the model were needed, in oxrder to get reliable
reéults. The simulation work was carried out on the ICL-1900
general purpose cémputer.

The results have been summarised in Table 8, whence it
is clear that the system's performance is best under the
fuzzy logic controller for all possible combinations of flow
rates. Note that the effectiveness of the controller, as
indicated by the percentage improvement in delays, is ho;
seriously affected by the total volume of traffic through the
junction.

These results have been obtained after several modifications
of the control instructions initially set. The trial
and error method was used in order to obtain an effective set
of rules (or what is termed "satisfying control" in Management
Science). In other words, a learning procedure was employed,
by which the human performance in a similar real life situation

of controlling a traffic junction is derived.
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It is interesting to note that, having defined (in
terms of fuzzy sets) what was considered to be a "small
queue" or "few arrivals", it was the rules rather than the
fuzzy sets which were modified. It is quite apparent that
if the parameﬁers describing the membership functions.were
introduced as additional inputs to the decision concerning
the control algorithm, the dimensionality of the problem
would radically increase, thus imposing severe difficulties
in the obtainment of its solution.

The question of stability has been part of the whole
problem of obéaining what is termed "effective set of rules".
In this particular application, the stability of the system
is defined as the condition of the system not getting
saturated if Subjected to a wide range of flow rates.

As far as fuzzy set theorj iévconcerned, its basic
concept, "fuzziness", characterises only a state of
knowledge. It exists neither in the system nor in the
controller but in thevhuman mind, Although the controller
which was actually designed is termed "a fuzzy logic
controller", it actually acts de?erministically. That is,
the algorithm by means bf which the decision is taken,
.although conceived in fuzzy, linguistic terms, is not
fuzzy after the actual design is completed, i.e. after the

fuzzy sets and implications are established [13].

It is hoped that further work will be done on the
_problem of controlling traffic by use of the theory of

fuzzy sets. It must however be kept in mind that the
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fuzzy logic controller was designed for the purpose of
controlling traffic characterised by randomness.' In a
linked system the traffic would be modulated. This should
bertaken>into account when considering a controller for an
intersection being part of a whole network, forming an
integrated control system. On the other hand special
problems would arise in this case owing to the hierarcﬂical
structure of the system and consequenﬁly the control policy
itself. It is thought also that in the case of integrated
traffic control systems the theory~of fuzzy sets would show
its merits much more so than in the present simple éase of

an individual intersection.

vy e g
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APPENDIX

THE FUZZY ALGORITHM

INTERVENTION: 7nth second

ELSE

ELSE

ELSE -

ELSE

If

and

and

then

If

and

and;

then

1f
and
and

then.

If
and

and

. then

If
and
and

then

T=very short
A=mt (none)
=any

E=very short

T=gshort
A=mt (a few)
Q0=1t (very small)

E=gshort

' T=medium

A=mt (few)
Q=1lt(very small)

E=medium

T=long
A=mt (medium)
Q=1t(very small)

E=long

T=very long
A=mt (many)
Q=1t (very small)

E=very long

s it fi72



INTERVENTION:17nth second

ELSE

ELSE

ELSE

ELSE

If

. and

then

If
and
and

then

If
and

and

~then

If
and
and

then

If
and
and

.then

T%very short
A=mt (none)
O=any

E=very short

- T=ghort

A=mt (a few)
Q=1t(very small)

E=ghort

T=medium
A=nmt (few)
Q=1t (very small)

E=medium

T=long
A=mt(medium)'
Q=1t(very small)

E=long

T=very long
A=mt (many)
Q=1t(small)

E=very long

INTERVENTION: 27nth second

If
and

and

T=very short
A=mt (none)

Q=any

< ijing
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then E=very short
ELSE
If . T=short’
and A=mt (a few)

and Q=1t(very small)

then E=short
ELSE>
| If T=medium
and A=mt (few)
and Q=lt(very small)
- then - E=medium
ELSE
If T=long
and  A=mt (medium) , R
and Q=lt(very small)
then E=long
ELSE
If T=very long

and A=mt (many)
and Q=1t(small)

then E=very long

INTERVENTION: 37nth second
If T=very short

and A=mt (none)

and Q=any
then E=very short
ELSE
If =short

and A=mt (a few)

and Q=lt(small plus)



ELSE

ELSE

then

If
and
and

then

If
and
and

then

If
and
and

then

E=ghort

T=medium
=mt (medium)
Q=1t (small plus)

BE=medium

T=long
A=mt (many)
Q=1t (medium)

E=long

T=very long

_ A=mt (too many)

0=1t(long

E=very long

INTERVENTION: 47nth second

ELSE

ELSE .

If
and
and
then
If
and
and
then
If
and
and

T=very short
A=mt (none)
Q=any

E=very short

T=short
A=mt (a few)
Q=1t(long)

E=short

T=medium
A=mt (medium)

Q=lt(long)‘

S.uytis



ELSE

ELSE

then

If

and

and

then

If

and.:

and

then

E=medium

T==long
A=mt (too many)
Q=1t (very long)

E=long

T=very long.
A=mt (too many)
0=1t (very long)

E=very long

s/ 17¢



TABLE 1

Average delays with fixedwcycle controller

and optimum settings

5)#/;77

N - S traffic E - W traffic Delay Errorx
(secs/veh) s

(?eh/hr) (veh/hr) Model Formula
360 360 7.2 7.4 -2
360 720 7.4 7.9 - 6
360 1080 7.9 8.4 -5
360 1440 8.4 9.0 - 7
360 1800 9.3 10.2 -9
360 2160 12.3 12.9 -5
360 2520 15.8 - 18.9 -17
720 720 9.7 10.0 -3
720 1080 10.8 11.6 -7
720 1440 12.7 13.8 - 8
720 1800 - 15.9 17.3 - 8
720 2160 21.8 24.9 <12
1080 1080 13.6 14.9 -9
1080 1440 17.9 19.7 -9
1080 1800 25.8 29.2 -11
1440 27.3 30.7 -11

1440




TABLE 2
Fuzzy sets defined on Time

(oxr Extension)

1 2 4 ) 8 10
very short 1 .5 0 0 0 0
short o] .5 .5 o] 0 o]
medium 0] w 0 .5 5 0 9]
long 0 0 9] .5 .5 o)
very long 0 O o) 0 .5 1

AL/ s



TABLE 3

Fuzzy sets defined On Arrivals

T TATrYivals

1 2 3 4 5 6 7 8 10
F.
none .5 o2 .1 (0] 0 0 0] 0 0
a few 1 .5 .2 .1 o 0 0 o 0
few .5 §l .5 .2 .1 o) 0 ] 0
medium .2 .5 1 .5 .2 .1 0 0 0
many .1 .2 .5 1 .5 .2 .1 o) o)

o

too many 0 i .2 .5 1 .5 .2 .1 0

ber St s



TABLE 4

Fuzzy sets defined on Queues

queue o .

(veh)| 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
f.gsets ' ) ’ '
very small ©.5.7.9.1.9 .7.5 00 000 OO0 OO OOOOOO0O0OqQO0O0 0 0 0
small o 0000.5 .7.91.9.7.5 0 0000000000000 U0 O0 0
small plus o 00 00O 0O0O0.5.7.91.9.7.5 0000000000 0 0 0
medium | ooo0oo0oo0oo0o 0000000.5.7.9 1.9.7.5 0000000 00
long | oo 0o oo0oo0 00O0OOOOOOO© O O0.5.7.91.9.7.5000 0 0
very long 0.0 0000 00 0O0OOOOOOOOO OO OO OO O0.5.7.91.9.7.50

ner ] 11, <



"more than"-operation on the fuzzy sets of Table 3

TABLE 5

\\‘WMK\N\§rrivals

mt (too many)

ehicles) | 1 2 3 4 5 6 7 8 10

fuzzy sets '
mt (none) .5 .8 .9 1 1 1 1 1 1
mt(a few) 0 .5 .8 .9 1 1 1 1 1
mt (few) 0 0 .5 .8 .9 1 1 1 1
mt (medium) o) o) o) .5 .8 .9 1 1 1
mt (many) 0 0 o o .5 .8 .9 1 1
0 0 0 o 0 .5 .8 .9 1

/NS



TABLE 6

"Less than" - operation on the fuzzy sets of Table 4

queue

(veh) | 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

f. sets

lt(very small)) 1 .5 .3 .1 0 O O O O O O O O O O O O O O O O O O O O O O O O

lt(small) 1111 1.5 .3.1.0 00 0O O OO0 OO O O 'O 60 0 0 0O 06 0 0 0 O©

It(small plus)) 1 1 1 1 1 1 11 1.5.3.1 0 O OO O O O OO0 OO0 O O0O O O o0 o°

1t (medium) 1 1 1 1 1 1 1 1111 11.5.3.1 0 0O OO O O OOOOOO0OO

lt(long) 1l 1 1 1 1 1 1111111111 1.5.3.100 00O O O OO

lt(very long) | 1 1 1 1 1 1 1111111111111 1 11 1.5.3.1 0 O O OO

'ZZC/Z’;S




TABLE 7

Decision Table for the contxol action

Fuzzy Controi Statement Time (seconds)

time passing = |dueuve 1 2 3 4 5 | 6 7 8 9 |- 10
Zﬁgt mt (none) | any W o | .5 0 0 0 0 0 0 0 0
short |mt(a few) ;Eé;ify o o) o) .3 0] o) OV’ ¢] 0 o)
medium)mt (few) ;;é;’ify 0 o 0 o .1 .1 0 o 0 0
long  |mt(medium) igé;’i)ry 0 o) o 0 o | .1 .1 o 0 0
lone me(nany) | Letshort)| o | 5 | o o | o 0 o |.5 |.5 .8
Fuzzy Algorithm 0 5 0 ;3- .1 .1 .1 .5 .5 .8

8’5’///;5



TABLE 8

Comparison between delays caused by an

§.H//g/¢

efficient vehicle-actuated controller and the fuzzy-logic one

N - S traffic | E - W traffic ‘Average overall delay Improvement
‘ ‘ (secs/veh)
(veh/hr) (veh/hr) 3
Vehicle~actuated | Fuzzy-logic
controller controller

360 360 7.2 5.7 +21
360 720 7.4 6.1 +18
360 1080 7.9 6.6 +17
360 1440 8.4 7.3 +13
360 1800 9.3 8.4 +10
360 2160 12.3 10.0 +19
360 2520 15.8 13.6 - +14
720 720 9.7 7.4 +21
720 1080 10.8 8.8 +19
720 1440 12.7 10.9 +14
720 1800 15.9 14.1 +11
720 2160 21.8 18.5 +15
1080 1080 13.6 12.0 +12

1080 1440 17.9 15.4 +14

1080 1800 25.8 21.6 +16
1440 1440 27.3 22.9 +16
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SUMMARY

The inverse problem concerned with fuzzy relations is
investigated. The conditions for the existence of a solution
are shown and an analytical solution is given. A method for the

improvement of the solution is proposed.
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1. INTRODUCTION

This paper is related to Sanchez's (1976) work on fuzzy
relatiénal equations. He dealt with the problem "Given two
fuzéy relations'QCU x V and SCU x W, find RCV x W such
that RoQ = S", where o denotes maxmin composition. He showéd
an existence condition of the solutions by giving the least
upper bound of the solutions. In general, the set of all the
possible solutions for the above equation forms an upper semi
lattice. Therefore, the greatest lower bound does not always
exist.

The paper discusses the problem called the "inverse
problem”, "Given a fuzzy relation RCU x V and a fuzzy subset
BCV, find all ACU such that AoR = B", Although it is a
special form of Sanchez equation, this fuzzy relational
equation is widely used because of its simplicity and it is
also very useful in practical applications (see Zadeh (1973),
Mamdani and Assilian (1975); Pappis‘and Mamdani (1976)).

For example, a set of fuzzy implications (or fuzzy conéitional
statements) of the fdrm "If A; then B, ieI" can be conveniently
‘expressed by the union of Cartesian products R = }J .Ai'x Bi,
AiC U, B;CV, ieI. Given AC U, then BC Vvis ing;:cc:ed,
according to the fuzzy relational equation A°oR = B,

_ The paper gives a different type of the existence conditions
of the solutions, which is related to the lower bounds of the
solutiéns. The lower bounds are analytically obtained by

the method presented in the paper. Thus, when a fuzzy system

is described by a relation matrix R associated with the maxmin
compositional rule, the set of all the possible inputs A's,
which give the same output B, can be obtained by combining

the least upperbound and a number of the lower bounds.
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2. STATEMENT OF THE PROBLEM

Denote a fuzzy subset A of ¢ ='{ui/i=1,...,m} by

) A=4{(u-,a:)/i=l}00b'm}'
) 1 s

a fuzzy subset B of V z'{vj/jzl,...,n} by

B =.{(Vj'bj)/jml'cco'n}’

and a fuzzy relation R of U x V by

R = {((ui,vj),rij)/i=1,...,m, j=1,...,n}

where ag s bj and rij are the grades of membership of Uy . 'Vj

and (uy, vj), respectively.

The composition of A with R, denoted by Ao R, is defined

to be a fuzzy subset B associated withﬁthe grades of‘membership
bj = : (aiArij); 1€j€n.

Our problem can be stated as follows:

"Given R and B, find all A's such that Ao R=B".

3. EXISTENCE OF A SOLUTION

3;1 Notations

Let row vectors a = (alaz...am), b =L(blb2"‘bm)'
c = (clcz...cn) and the mxn matrices R = [rij]’ s = [sij]. The

—

following-notations will be used:

asb : | a;3b,, ‘o‘i
a<b : aiébi, ’v‘i
anb s (alAbl_azAb2"'amAbm)
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avb : (ar«blazvbz.”amvbm)
a=0 : a;=0, Vi
a : g (a;)
RS : LY N-1,%55
RsS P Tys€sia ¥ i, N
§? : transpose of a :
ET : transpose of R
AR : I.‘_lf\gzl\ .../\_:Em
} where r; is the ith row

VR : r.\VY.V ...VE vector of R

= =1Vv=2 ~m =

3.2 Definitions

In the sequel, small letters x, y, etc. are used to denote
scalars and when underlined, like a, b etc., they denote vectors.
Capital letters R, S etc. are used to denote fuzzy subsets and
when underliﬁed, like R, 8 etc., they denote matrices.

Any scalar and any elements of vectors or matrices are
assumed to have their values in the interval [0,1].

o—-composition

The o-composition of a vector a = (al a,...a ) with a
column vector b = (bl bz...bm)T, denoted by aob, is defined

by the scalar
g_o.lp__A_j\-l (a;ADb,).

The o-composition of a row vector a = (al az...am) with

a mxn matrix R = [rij]’ denoted by aoR, is defined by the

row vector

ao A 0Y, A0Y,...201Y

where Iy is the jth column vector of R.
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g—-composition

The a-~composition of a scalar x with a scalar vy,

denoted by xoy, is defined by the scalar

Given a column vector a = (a1 az...am)T and a scalar x, the
a-composition of a with x, denoted by aax,is defined by the

column vector

T
aax A(a ox a,0X...a ax)

Given a mxn matrix R = [rij] and a row vector
a = (a1 a2...an), let x, be the jth column vector of R. Then
the a-composition of R with a, denoted by Roa, is defined by

the mxn matrix

Roa A [rl 1 X,%a,...x aa, ].

- Thus Raa is a matrix, Roa = [wij], where

g-composition

The B~-composition of a scalar x with a scalar y, denoted
by xBy, is defined by the scalar

0O if x<y
xBy A {

y if xsy.

Given a column vector a = (a; az...am)T and a scalar
X, the B-composition of a with x, denoted by aBx, is defined

by the column vector
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apx 4 (a;Bx GZBX(--amBX}T-

Given a mxn matrix R = [rij} and a row vector

a = (a; a,...a ), let r; be the jth column vector of R. Then

vthé gB-composition of R with a, denoted by RBa, is defined by

the mxn matrix

where

RBa A [r,Ba; r,Ba,...r Ba l.

Thus RBa is a matrix, RBa = [Zij]’

9o~sets

Given a column vector a = (a; a2...am)T, such that

a; = a4 or 0, i=l,...,m, the set ¢(a) of column vectors ¢ (a)

is defined as follows:

where

k

o(a) A {o(a)},

T
¢(a) = (¢14¢2"'¢m) ,

=0 or &, i=l,...,m,

©
U

i=1

Thus, if there are k nonzero elements in a, there are

vectors in ¢(a). Note that ¢(a) is defined iff a; =0

or §,‘*fi.



Example: Let a = (0O .3 0O O .3)T.  Then a-=.

and a; = .3 or O,*fi, thus ¢(a) is defined and we have:

Ty,

®(@ ={(0 .3 0 0 O, (0 0 0 0 .3

3

Given a mxn matrix R = [rij], let r, be its jth column

J
vector and assume that @(gj) is defined for j=1,...,n.
the set ¢ (R) of matrices ¢(R) is defined as follows:
8(R) A {$(R)},
where
§R) = [4lxz)) elzy)...olz))].
Example: Let
O .8 ’5
R=1}.2 o 0O
.2 (0] .5
We have
o .8 .5 { o] .8 0
®(R) = .2 0 O ' .2 o o],
o] 0 0 0 0o .5
| ) L )
4 N ' 1
O 08 05 O 08 0
0 0 0 ’ 0 0 o] .
2 0 0 .2 0O .5
\ J \ J
Note that there are z matrices in ¢(R),
n
z = Il z
j=17
where
' number of nonzero elements in Iye if X5 # 0
zZ. = & ‘

l' if£j=00 '

Then
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3.3 Some properties of o, a, B compositions and ¢-sets

.Given scalars x, y we have

Pl xayzy
P2 xBy<y
P3 X0Y = YOXEOX=Y

P4 XBy = yBX&X=Y

Given a column vector b = (b, bz...bm)T and a scalar x,

we have:

P5  boax3bBx

P6 da:zaeb = x¢ b eb:b,>x

S—

i

Given a mxn matrix R and a row vector b = (bl b,...b )

we'have:
P7  Rab3R8b.

Given R, b as above and a row vector a = {al a2..;am)

we have:

P8 aoR = b®aor. = bj,*fj(gj: jth column vector of R).

- == j

3.4 The necessary and sufficient conditions

Lemma 1 Given a column vector b = (b; b2...bm)T and a

scalar x, we have

J azach = x(;;»(Qonx)To_l_)_ = x<:>(_]:_>8x)To__}3 =X &
(6(bBx)) ob = x,Fo(bBx)ed (bBx) .
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Lemma 2 Given a row vector a = (a:L az...am) ; a column

vector b = (bl b2...bm)T .and a scalar x, we

have
- 7 ,
aeb = x*(bax) "za (1)
ash = x»1 ¢(bBx) e (bBx) : ( ¢(bBx)) Tca  ~ (2)
Lemma 3 Given a mxn matrix R = [rij] and row vectors

a= (ay éz...am), b =(b; b,...b ), we have

aoR = ba< A(Rab) "~ L (3)
aoR = b»3 ¢(RBb) €@ (RBb) : V(4(RBD)) Tsa  (4)
Theorem 1 Given a mxn matrix R = [rij] and a row vector
T b= (b; by...b ), we have
Ja:aoR = be A(RoD)oR =b (5)
Ja:acR = be> A 0(R8b) e (RBD) : V (4(RBD)) R = b
{6)
Proof (5): See Sanchez (1976)

(6): ~)acR = b> 3 6(RBb) @ (RBb) : V(6(RBb) <a (from Lemma 3)

> V((r8b)) % ReasR = b. Let x, be the jth

column vector of R and ¢(RRb)

= [¢;(x;8b;) ¢,(x,Bby) ... 0 (r 8b )].

Then V(6(R8b))™ = (6, (x;8b)) V...

T T : T
V(4 (x;8b)) "> V(6(RBD)) "3 (04 (x48D5)) 7,
: T T - .

V5> V(4(R8b)) 0 £53(95(x;8b5)) 0, = by, s
" (from Lemma l)+V(¢(§B§))To_R_,>.g. Thus

b< V($(R8b)) ToReb, i.e., V($(REb))ToR = b. z

+)} Obvious.
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Theorem 1 states the necessary and sufficient conditions
for the existence of a solution of the inverse problem. Thus,
giVen a fuzzy relation R from U m'{ui/i=l,...,m} to

= {Vj/jzl’ . > 'n}

= {((ui,vj)‘,rij)/iél,. eesm,3=1,...,n}
and a fuzzy subset B of V.
= {(Vj!bj)/.‘j=ll' .o l'n}l

: ietfg = [rij] be thé mxn matrix corresponding to R and

b.= (by by...b ) the vector corresponding to B. Then the

' necéssary and sufficient conditionsvforAthé existence of a fuzzy

éubsét ACU satisfying AoR = B, are given by either Eq. (5)

or Eq. (6). . . s |
Obviously the two conditions are’equivalent, implying

each other, i.e. .

AReb) LR = b &6 (RBb) 2 (R8D) : V(¢ (RBb)) o R = b.

4. -~ SOLUTION OF THE INVERSE PROBLEM

4.1.’ 5—composition and its propérties

Given a mxn matrix R = [r ] and a row vector
(bl bz...b ), the 6~ comp081tlon of R with b, denoted by

gag, is defined by the mxn matrix

RSb

[

[Slj]' Sij = (/\ (rikcxbk))B(r Bb ) i=1,...,m,

j=l,...,n

Note that /\(x' abk) is .the ith element of the row
k=1 .
vector /\(ga}_a_) and riijj is the (i,j)th element of the mxn

matrix R8b. Thus Réb can be obtained from /(Rab)® and RBb.



Example: Let

.7 .5 1 .5

b=1(.7 .5 .9 .6)

We have

07 .5 .9 0
RBb=|0 O 0.6

and finally

il
)
O

Given R, b, we have

P9 RSb<RSb
P10 & (RSb)C & (R8b)
P11 V($(Rb)) T< A(Rob) T, N ¢ (Réb) €& (RSb)

P12 V(¢ (R8b)) "< A(Rab) "¢ ¢ (RBD) €2 (RSB)

$.12 /i1



4,2 The solution

Lemma 4 Given a column vector b = (bl bz...bm)T

and a scalar x, assume that 3 asaob = x. Then

Va:zaob = x ) 3¢ (bBx) ed (bBx) : ($ (bBx)) T<ac (bax) T
| | (n

Ya, V¢(§Bx)e®(98x) : (¢ (DBx)) T<ag (bax) Ty aob = x.
(8)

Theorem 2 Given a mxn matrix R and a row vector b = (by bp...b ),
assume that da:aoR = b. Then

MatacR = b 3¢ (Reb) €@ (RSD) : V(0 (RoR)) Teak A(rob) ™

(9)
¥ a, N6 (RSb) 2 (RSb) : V(4 (RSb)) Teac A(Rab) Ty aoR = b |
(10)

Proof (9): asR = b+ 3¢ (RBb) ed (RBb) : V(4 (RBb)) Tcac
| A(Rob)T (from Lemma 3)»
3¢ (Rsb) €8 (RSb) : V(6 (RSb)) Tcac A(Rab) T (from P12).
(10) : V(¢ (Rsb) ) Tsac A(Rab) T+ V(4 (R8b) ) Tcac A(Rab) T,
4 (RBb) £ (RBb) (from g_lg)+(¢j(_:;j3bj))Ts§< (x b )", M5,
where X, is the jth column vector of R, raor,

= bj' ¥j (from Lemma 4)+aoR = b.

The solution of the inverse problem is derived from theorem

2 as follows:

Given the fuzzy relation R and ‘the fuzzy subset B, all fuzzy

subsets A such that AeR = B are given by

V(¢ (R8b) ) Tcac A(Rab) T, % ¢ (RSb) €8 (RSb)



provided that there exists at least one such

R:
2,b:
4.3 Example:
R =
B=
We have
1 1
.6 .5
Rop =
11
l1 .5
\
N (Reb) T
0
.6
R8D =
.6
1 O
L

the matrix corresponding to R

the vectors corresponding to A,
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A, where

B respectively.

Let
U VI Vi V2 V3 V4 Vs
uy .4 O .9 .6 .8
u, .7 ..8 .3 1. .5
ug .6 .4 .3 .4 .9
u4 .2 1‘ .5 .8 .4_.
v V1 V2 V3 Va Vg
b .6 .5 .9 .6 .8
1 1 1
1 .6 1
1 1 .8(
1 .6 1
=(1L .5 .8 .5)
o .9 .6 .8
.5 o .6 0
0 o 0 .8
.5 0 .6 o



i

o
o
]

0

{

It is easily seen that /\(g@)’%g = b, thus 33:_@_03

~Consider, for example, ¢l(§6§)e®(§6§)such that

0] 0
o 05
¢, (RSp) =
.6 0]
0 0
\
We have

.5

©c © O

0]

o

#

V(¢,(RSD)T = (.9 .5 .8 0).

rEAA g TR

b.

Any fuzzy subset A, with grades of membership vector a

‘such that

(.9 .5

.8 0O)gac(l

.5

.8

.5)

has the property that AecR = B. Now consider ¢, (RSb)e®(RSb),

such that
’ o
0]
02 (BSD) = |
L (0]

We have

Vip, (Rsb)) T

(.9

.6 0)
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Again, any fuzzy subset A, with grades of membership

vector ‘a such that

(.9 .5 .6 O)<as(l .5 .8 .5),

has the property that AeR = B. Note, however, that

(.9 .5 .6 0)<(.9 .5 .8 O0)

4.4 Remark

Adgag)T is the least upper bound (l.u.b.) of the
solution vectors;of the inverse problem. The set
V(¢ (R8b)) /¢ (R6b) €2 (RSD) } includes the lower bounds of the

solution vectors. Generally, we may have the case, where
Vo, Rep)) T Vio, (Rep)) T

as it has been seen in the last example. 1In the next section,
a class of non-greatest lower bounds is idéntified, the

solution of the inverse problem'being thus improved.

5. IMPROVEMENT ‘OF THE SOLUTION

5.1 Definitions

Let a mxn matrix R = [rij] and a row vector b =‘(b1 b2"‘bn)’
In the sequel, the set'{\/(¢(BSQ))T/¢(§5§)e®(gﬁg)} will be -
denoted by V(& (Rsb)) ™.

A vector \J(@l(gﬁg))Te V (¢(RSb)) T is said to be redundant

if there exists V(¢,(Réb))"e V (2(Rsb))T such that

Vs, ®ep)) T Vo, (oD T

Let s,, s, be the kth, 4th column vectors of matrix S

respeétively. If
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Siﬁ‘# O*Sik‘# 0 and Sikgsix’Aaik

(s

is = Oésik is arbltrary)

then s, is said to be dominated by s,.

5.2 The improvement of the solution of the inverse problem

Let a mxn matrix R = [rij] and a row vector b = (blvbz"‘bn)
and assume that da:acR = b. Let S = RSb = [s;41. If 5, is
the matrix obtained from S by deleting all its zero column
vectors, it can be shown that

~ T T .
Veesn ™ = Ve | (11)

Denoting by §k the matrix obtained from §0 by deleting
a column vector s,, it can also be shown that if and only if

gkvis dominated, then

Ve NTcVeen® (12)
and ‘

Jowspeasy: VoV nT, ¥oees) an

The significance of (12) and (13) is that, by deleting
a dominated vector Sy from §0, a (pésSibly empty) class of
redundant vectors is excluded from the solutions which are

obtained from
V (6(5,)) Tcac Arop) T, M o (s5,)e0(8,) .

Thus, if z, z' are the number of row vectors in
\/(é(g))T and \J(@(gk))T respectively, we have

z‘ z—.z.—
Zx

where zk is the number of nonzero elements in the column

or s, .
vector N
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If 8* is the matrix obtained from §O by deleting all its

dominated column vectors, we further obtain from (12) and (13)

that

VeeenT® e Vies)?T (14)
and |

dosmreesn: Viesn T Viosan T, ¥osreots) (15)

Thus all the solutions of the inverse problem are given
by

V(6 (5%)) Tcac A(Rob) T, V6 (5*) ed (5*) .

It can be shown that any reduction of the dimensions of
S8* would result in some nonredundant vectors of \/{@(_.":}_)}m
being eliminated. vHowever, some redundant vectors may still

be included in \/(@(g*))T.

5.3 Example
In the last example (section 4) we had

r 3

.6 .8
o) )
8
o)

9
)

.6 O 0] o .
0

\ J

and A@ep)T = (1 .5 .8 .5).

Thus
0O 0 .9
Q= 0 .5 0
b6 O 0
tO .5 0




Ll S

since the 4th and 5th column vectors of S are dominated

by the 3rd column vector. We have

Ve T ={(.9 .5 .6 0), (.9 0 .6 .5)}

Ali«g's, such that aoR = b are given by

(.9 .5 .6 O)<a<(l .5 .8 .5)

orx
(.9 0 .6 .5)gas(l .5 .8 .5)

These are shown by the tree of Fig. 1.

6. CONCLUSIONS

In this paper, the inverse problem of fuzzy relational

equations has been investigated. A different type of the

conditions for the existence of a solution have been derived, and

the problem is given an analytical solution. A method has been

proposed, by means of which a class of redundant lower bounds

of the solutions are readily eliminated; the general solution

is thus improved.
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(.9 .5 .6 0) (.9 0 .6 .5)

Figure 1. Solution tree
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ARRANGEMZNT OF FORMULAS AND MINIKIZATION IN Pi-LOGICS ( ALGEBRAS ).

i

L Vaclav Pinkava

} Severalls Hospital

; Colchester, Essex, U.K.
| ,

Summary. .
It is shown that all camonic formulas in Pi-logics are generally

minimizeable, this possibility depending again only on the defined or
crucial 'prcperties of the connectives. With some further restrictions
imposed on the connectives other types of canonic formulas can be con-
structed as well, which are again minimizeable,

Introduction.
The paper presupposes knowledge of (1) and preferrably of (2),(3)

and (4).
It was shown in (1) and quoted in (2) and (3), that three inccmpletely

defined connectives 6f two arguments, i.e.
. {O i-f v, =0
p X

_fo iﬂ- vi=0 ‘ ..
b) 'D'q@v'z "’{/L if A =4 otherwise undefined
c) V,0h Y ity = 0

plus the cyclic negation defined as: V+4 (”“’d E) =
always form a functionally complete system in any finite multiple-valued
logic, as every functiom f(\f,,lfz; )"n)?ﬁcan always be expressed by the

canonic type of formula: WM<k g
@[Cﬁ‘m( 3 ("2 7} .
F(GM‘L, qun) %0 v 4'fb:1
The constants and the characteristic functions of the type: "fc‘ -
O?htrw"

can be generated by the subset {Q "'} as shown in the papers quoted.
Thus the method enables convenient generating of new types of conncctives
~which will always form a functionally complete system, provided their cru-
cial or defining properties have been preserved.
Further work in this topic was concerned with additional properties of
the connectives which would enable forming complete systems consisting of
less than four connectives. .
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It was also shown that most, if not all, of the multiple-valued logics
‘used in practice are actually instances of the Pi=-logics or show an obvious
and close relationship with them.

However, the canonic formulas are clumsy and very legthy. Thus, it was
obvious that, should the Pi-logics have any practical applicability, the
question of minimization of the canonic formulas would require some atten-
tion. It seemcd that - owing to the incomplete definitions of the general
types of connectives - the question of minimizeability would have to be
considere§ separately in every instance. Rather surprisingly, the opposite
was found to apply. This is the sulject of this paper. ‘

whilst the basic facts have been repeated here; a deeper uhderstanding
of the topic would require familiarization with the previous papers quoted.

Minimization in Pi-logics ( algebras ).
'As shown elsewhere /(1),(2),(3),(4)/, the following holds for any

Pi-algebra* ,, me Er; n

@ [CY@($T%W?”J @fcrm( i1 kr“tm))]'1 :

,‘.(q‘ by, ,g.)to f‘(“«ﬂx., *‘zk)*‘ﬁ
this owing to the fact that the functions of the type: \r(ud can assume

only the values 0, l and for these values the connectives EB and«Q} t
behave the sam ¥ ~s apparent from their respective definitions.
Let us mow :«onsider a gubformula of the type:

( (=4 \Y%(LE))A
- Taking any two of the expressions of this type, it is clear that they cannot

both assume the value of 1 for the same substitution. It is, however, possi-
ble to have such a substitution where both expressions of the given type
assume the value of 0. / It should be realized that, whilst defined for the
pairs of values007, 01>, £10> , the general connective(O’ .is not
defined for the pair of values £1,1>> ./

Let us denote the above type of expressions with ff1,jz . Further, let

Q be any elementary formula / partial expression / such as may occur in a
canonic formula of the type considered. Bearing in mind that qﬂ ,ﬁﬁ cannot
assume both the value of 1 at the saue time, 1t is easy to see that the
following holds for the possible substitutions:

(a@g) O (asy,) = a8 (Q0v.),

where both sices ¢f the equation acsuwe the value of O for the substituticn
00> ard the value @ for the reunaining possible substitutions £ 107 and/012
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Let us further realize that: ) .0 "{/(U) 4 as is cbv::.ous.
It is then possible to formulate Theorem 1.

Theorem 1.
In canonic expresszons of the tyoe'

) = () [ @ BN ‘ |

§ (41, Gn,- 4n) 20
any. connectives c¢f the type a , O will behave in such a way so that
8 will appear distributive with respect to O ,/ although not hecessa-
rily so in a general context /. k-1 ‘ ‘
Also, owing to the fact that \ \K(v):{, the above type of formula will be
generally minimizecable. L=0
The Proof preceded the Theoren.

This gives a basic approach to minimization. Clearly, minimization algo-
rithms or strategies developed for canomic formulas in modular lcgics ray be
applied straight to canonic formulas in any Pi-logic emplying the £ -~tyre.
This follows frcm the fact that the modular operaticns:"summation and multi-
plication modulo k" are instances of (¢) and ] respectively and the other °
properties of individgal instances of (), (B do mot influence the process

of mininization, as already shown.

Let us now consider the tyre of function: ec {$} having the additional
property of: ’Uie R-1=vi, .
As shown elswhere (4) *) the set {9' N_} forms a functionally complete system.

Let us further lntroduce the type of functlcn.
E-4ajf
ﬁ(b‘} 10 okﬁerwc
As shown again in (4), these functions can be gererated ocut of the set {e‘,"’}
by first gemerating the functions \f/‘-(v’} in the familiar way / see (1),(2),(3)/
and then apprlying the formula. S~ k-1

ﬁwﬁ @[ -[lf,c tv)j Y(V)]

The constants C)., are of course also generable via {e, "’} .

Let us furthef introduce any function of the type O The set {Q“:}allows
two specific subtypes of @ to be generated, but this is irrelevant from the

point of view of the vroblem now considered.

T*)The recvective Trecres has boen aaded to the final versicn of (3).
However, as stated on pg 4?5 of the respective Proceedings the final ver-
Slon ha¢ nct arrived in time, whcreupon the organizers kindly had the ori-

. §inal draft re-~tyied and published. /author's note/.
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Lemma 1.
For any ]([v,,% ) £ 0 the rollomng holds:

neg” o r
£ @) = @[C @(@{%(V | |

pc«,,az,--saa)#o
The correctness of this Lemma is obvious. If a value vector <‘31,qu a7
fitu the expressmn(@{q{(m then it does not fit any other exprcssmn of

this type. é‘

. . {a () = k-1
Consequently, for that particular expression it is: {
owing to the properties of @ . Then ¢ @ﬁ {= C)’ a*d beamng in mind
that all the renmaining expressmns[c,ue( “Fag("e} JA=0, the formula will be
reduced to Cf'OOOr OCC}» 0 . Sirilarly for all the other value vectors.
Thus the above holds. Q.E.D.

Let us now consider any two expressions of the type Le{%( )J both
pertaining to an instance of the gemeral type of formula Lemma 1.
Let us synbolize thenm by fn ﬁ . Obviously, the expressions ﬂ,/f’,_ cannot
both assume the value E-i for the same substitution etc. as with Proof
- 0f Theorem 1. . -
It is then easy to see that the following holds for the possible pairs of

value substituticns: < 60>, < £-4, 0>, < 0, R-1>:

a$ (906)= (20£) O (a€f)

Let us further realize that: £-1
k-4 | ‘
Of o bt fonsas . Dfior=p16be Ocleocvoiv,
= k-4 3

It is then easy to see the correctness of the following Tneorem 1l a.

Theorem 1 a .

In canonic expressmns ¢f the type*

Lo, ) = @[Cr 9( @{QL(‘Q»J&

F[Gudb d") *O

any pair of connectives of the type: @ é will behave in such a way so

that € will appear to be distributive with respect to ¢ in that type
of formula a' gyough not necessarily so in general. Owing further to:
{7(” £ 1, the above tyve of formula will be generally miniuizeable.

“'rhe Prfmt preceded the Theorem.

—— L
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Let us now consider the following functions:

Bc{EB}) vav= Vv
6 ciO), vevsv

Let us further introduce the following characteristic functions:
U’ L
«F(V) O o{{uwc
. ‘:0 42)6“'{
where: X2 i,l;~°")€‘4_; ¢ P

If ary system of the type: {E,G} is completed by any system of the
tyre {@; _lf, then the above functions can be generated via the subset
{@, } Constants and characteristic functions \]VL'(U) may be of course

generated by {@ ’\r}] and: g{ E}kt/‘ (v) = R (,V)

We can now formulate .
., Lemma 2. 0
For any multiple-valued function ‘F(”le) "")v'“) *
the following holds: M4E"™  n
fom = O Hfen],
Azdq €= )

4

‘f(m, Gp,-1ay) #0

Considering the basic canonic formula in Pi-logics / such as showr,e.g. here

in Theorem 1,/ we realize that the expregsiors of the type [Cr B E}kl/a{(%))_h

can be reprlaced by those of the type[_ é‘Fag(Vi’ 1{ , as they will obviously

behave the same way with respect to the value vectors. Thus, the above holds.

g.E.D. )

/ In this full canoric form, i.e. not yet considering miniwmization, the
‘O‘-type need not be of the subclass (9,./

Proof.

We may further observe that, with respect to the characteristic functions
of the type: F (V) / with the same X /, the connectives will behave in a wa
1somcrphic to the "&" and "V" in binary logic. Clearly, as the functions
{: (v) wuay assume only the values }C 0 , we have:

gl xjo ( Ol x| 0
XIX |0 || x ’
olo o olx!| o ’
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The following then holds / and nay bekvcrified by the tabl; wethed /@

o {8 (feef): ( oy e fieay o Cfitw @ fiew)
o f.e ({8 )= ( fm)ej}w,.) & C e ftw)

Let us further realize, that @,{3 C'V) x
k .

3 Ry
-and: E[U)B)(: ECV); (JMC)C)»
4 X
It is also: {\-(Uj E{)‘(V) = 0

Thue, if rendered by means of © ,[3 and {CV’) , any multiple-valued
functicn may be viewed as consisting of maximally £ 4 "pseudobinary"
functions, which can be each arranged like real binary functions and then
mirizized fcllowirg the rules set above. =

%e can thus forzulate:

Theoren 2.
A formula given :Ln tge canonic form:

feovy ) = @[ WC @2 i
AT Tes 1% .
‘G (ﬁ“qll"'l Q)\)Tt-o

can generally be minimized by decomposition into €~ 4 or less pseudobinary
functions in which case the comnectives @, B are mutually distributive, so

1 3

that the resvective subformulae may be conveniently arranged and then re-

: L4 X
duced owing to the rules: \C-(UJB ﬂ.(w = 0/

6 {w)»

(tCV)Ex = {;Of

The Proof of the Theorem was given in the preceding demonstration.

It should be acknowledged that this approach using the functions of the
type ﬁx(V) and the idempotent subclasses of @ , BB dépends on a certain
generalization of the ideas contained in a paper by Rabinovich and Ivas'kiv,
dealing with the ternary case. {(5). The generalization consists of an exten-
sion from k=3 to a general k and replacing the fully defined connectives by
classes with just the necessary relevant properties. These, in their own turn

form subclasses of still umore general classes of Pi- connectives.
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The canonic formulas dealt with so‘far may be considered as generalized
analogies of complete disjunctive normal forms in binary logic.
Let us now consider a subclass of connectives such that: @C @} and
vi®i=1- Let us further introduce the following type of characteristic
function: u :,
| ‘F M 1 ommu
/ BHaving any complete Pi-set, the ‘F(V) fuctions are of course generable out

of {@;@ } via the formula: k-4 @Y(V) /.

It is thereiore easy to see that the following Theorem 3 holds.

Theoren 3.
For any multiple-valued logical function ‘F("n"’u g vn)$ 0 , it holds that:
-mg.E" n m E ~m,
T
v = T o @ (‘V
o g it~ B D
24

'f &1;01; yﬁn)$0 {(“asqzy-':ﬂn)%i
(cx- o,z),...,.,,Q-O

Proof. @
Any expression of the type {al(vt );LCB wlll assume the value of Cy¢
if substituted by its resr;ectlve value vector < Gy, &, - - )“*) or eise the

value of 1, ow:mg to the additional property of »he & -tyre, i.e.: V@’I =1,
Thus, if t:ze m expressions of the type: [@F (y{)lﬂ are forsed,

using characteristi¢functicns pertaining to those value vectors for wnich
the function does not assume the value of 1, it is clear that, if these va-
lues arv fed into such a foruula, the expression will assume the valuc of
the respective constant Cn$1.

( As @fae(u when the correct values are substituted, it is rnot necessary
to use an explicit constant 0 ).

On tn§‘1other hand, if values which do not fit any expression of the type
[@ (bg)j)t are substituted into the formula, then clearlyA the whole
formula will assume the value of 1. However, such substitutions are exactly
those which have been left out when constructing the formula , and thdsearc
those, for which the function -‘F(vhvé}"' +yVy) = 4. The Theorem is proved.

Owing to the additional property of the @ -subtyoc,i.e. W\ @1= 1 | it
is also truc that: L @4 = 1 < It is then easy to cae that, with ropgard te
the characteristic furctions (’ (V) the connectives @& , f  will behave

as nutually distributive.
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It is further obv;tous that in the type of formula Theorem 3, two expres-
sions of the tyoe[_@ {Qe(lfe)],'{ cannct assume the value of O for the same
substitution. };enom.nb any two such expressions by: f‘:, F we may see that
the followirg equation holds for the substitutions {447 < 4,07, K0,12:

oo ( hBf)=(a®k)8 (adF.) ,

( Kote: If the substitution <€ 0;,0>could occur, a general @ ~type could
not be used in the above formula, since, gencrally, @ is not defined

for a B A4 . However, such substitution cannot occur, as has been shown.)
-4 ~/4

Realizing further that L -Fl(v) 0 and A@B0=a we may formulate
the following Theorem 4. =4

n
m)-': 6"’3 n f\z‘

Theoren &. e € @ ‘faﬁ(mﬂ

In a canonic form of the type: X
.1
{' (@1@25-:9 aa)#“
any connectives of the defined types will behave in such a way that @ wiil

appear as distributive m‘th respect to EB .

*  Owing further to EB {L (v) O and &@O Q , the above forzula will
be. generally minimizeable.

The Proof preceded the Theorem.

Let us further consider again the function: é - {@} and Uééé."{ =

Let us introduce also the function @c {@11 and UL’@ E-/f = 6-4,
and the function: OVR-{ 0 ‘.J](U"‘

L
YL‘OU* k=4 offervin

It is thus possible to formulate two Theorems:

Theorem 4a.

o

. 0
For any multlnle—valued 1og:_ca]. function ‘P(“’uul; T V") *

(v, -on) = O[cré (@‘F{({C\/‘ )] @ [¢,®@( @%&)}L,

{ Ca“au nés) 0 '{ (“4.“{) ")a")* et (CX. 0;1 2) é-i)

Theorem 4b.

In a canonlc formula of the type:

} =

A = A -

(aqid2, :»“u){“"" /
any connuclives naving the general properties defining @,é will behave
in such a way so that @ will appear as distributive with resrect to @ .
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~b-{
Owing further to @WW’) 0 ,and a.@O CL this type of formula will

bhe generally minimlzeable.

Proofs of the Theorems 4a, 4b parallel exactly those of the Theorems 3, 4
and may be easily made explicit by substituting in the precedfging Proofs

in the following way: o~ ~f-4

Qeo®, Bo o, 1464, fcwe«%wv) @e-%@,. 040,
| Feddn

It may be observed that the formulas employing GD, to a subclass

of which the Post algebras are an instance.
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INTRODUCTION

The subject of this article is an extension of the Pi-logic
algebras to enumerably infinite case.
As shown elsewhere {1] , [2] , [3] , [4] . the Pi-logic
algebras represent a class of functionally complete systemé of
many valued algebras of logic, of which most of the currently used
systems are instances. The unifying or common properties of the
Pi—aigebras can be envisaged in the form of incompletely defined
functions which, nonetheless, form functionally complete systems,
These incompletely defined functions can be then completed in
various ways, thus generating the known logic systems liké that of
Post, Rosser & Turquette, Zhegalkin, Aisenberg and Rabinovich etc.
On the other hand they can be completed in such ways as to generate
entirely new functionally complete systems of logic. This may have
some importance in various applications in computing and elsewhere
(4] , [5] . The systems dealt with were finite. However, some
studies dealing with the sematics of stochastic and fuzzy automata
[e] , [7] . [8], | which sti;;;ulate the usage of infinite valued
logics, have mo»tivated this extension of the Pi systems tQ the
enumerably infinite case. This article presupposes the knowledge

[1 . [2] , or at least the appendix of [4].

£
£
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THE INFINITE VALUED PI-ALGEBRAS

Let us consider two incompletely defined and one completely
defined two argument functions with arguments running through
the set of non negative integers 0 , 1 , 2 , ...... Itis not
necessary to stress that an enumerably infinite set can always be
mapped into the ahove set of integers. and thus the choice of values

set can be made without losing generality.

a) V10V2 - { vilfvj=0
otherwise undefined

b) if v, = Q

leVZ (= vjlfvizl

otherwise undefined
1iffv

ol V1<:> v, = { 1 2

0 otherwise

Let us further introduce an enumerably infinite set of constants.
{Ca}ﬁ{0,1,2,. ...... }

The following one argument function

¥ =v+ 1 (where "+" has the meaning of
ordinary arithmetic addition)

~X , fas
We shall write v, thus denoting x super-positions of —~-
X o
so that ¥V =v +x. Itis especially?'z = v, Then it is possible to

formulate the following two lemmata:



LEMMA 1
%@C
Coe= ( v&V) %={0,1,2,....}
Proof

First (v.&v,)) =0 foranyv % v., thus as v7!= qx’ for
1 2 1 2 ‘
whatever the substitution a for v, it is always ?.;x = a + x, where
x is a deliberately chosen interger x>0 , and thus a# a +x,
—~ X
so that (v&V 7)=0.

~ae
Then 0 =0+nme=%6=Cg ,

e
N
so that cgez(v é::}??)x) Q.E.D.
Corollary

The formula given in Lemma 1 renders any constant including

c = 0 ,i.e. c, = (v é-:}’\jx); for generating constants
1

N&"
C,#0 it is also possible to use the formula  Cy = v&ev)
obviously v&p v = 1 for any substitution of vand 1 +#~- 1 =¢¢

for any e#0. (e an integer).

Si4/220

Let us now introduce the following type of characteristic function:

W, W) - {1iﬁv=i

0 otherwise



S /221

LEMMA 2

NNGE
Yy, M= (c; &V) =[vev) &v

Proof
The correctness of Lemma 2 is obvious. The expression’

{ c, & v) = liff v=1iand O otherwise, which is the definition

/\,:5{5
of \lvi(v). In it's own tum c, = v&e v as shown in
Lemma 1.Q.E.D.
THEOREM 1
Any function of an enumerably infinite valued logic f (v1 YRR .vn) +0

can always be expressed by the following type of formula:

<K len

meE o
fopvp - wi= (O te, o[y, (vl =
A=1 £=1 ¢ 4
f(ai,ag:---anﬁ(?

Msgo aﬁ
X

» L=m o
= Q{(@)Df g[(vg S 6Yv] ]}

f(aj.,azj...a.n)#g

Proof

Allowing for the possibility that the above formula may theoretically
A=m
consist of an infinite number of elements of the type ['cf o ( g ‘f/af (V) Jl
we can easily see the correctness of the theorem. In analogy with the

finite binary case it is easy to see that any logical function can be viewed
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as an (ordered) set of n + 1 tuples (or vectors with n + 1 dimensions):

of the type <a1, 8,85, ee.ld ] 13)/_i where ai(l =1, 2, ...n) are

3
respective substitutions of the variables, Vi Vgs eeaVy .and b is the
value the function assumes for that particular substitution.

Let us first consider that out of 7Co possible vectors of the
type <a1, az r e ah&only one b #() , so that we would have a

function assuming a value b #0 just for one substitution and 0

for the rest. If we now formed a formula of the type:

[Ya, V) OYa,(v 8.0 yaﬂ(vnmcrA (C‘?:l: b, )

where each 'Ya_(v) is a characteristic function so that
t
\{f (v) = { 1iff v =a;
a ,
i (0  otherwise

this would essentially

express the function as obvious from the definition of Y}fi(v) .and vOv,.

Let us now consider several functions of this type 9:71 . 902 ;s ,Epm
where m is first a finite number. Obviously if gpl . 902  eeeny gpm

were linked together with the functor O , i.e. A O ?ZO"'O?Qm

they will express a function assuming respective values bﬁ. cees 'bA
m

just for the respective substitutions (al, 3, - .an))\.
i=1,2, ...m, and 0 otherwise,. L

As long as the number of substitutions for which there are function
values, b)fj:{) is finite , there is no difficulty in envisaging the
construction of the respective formula. If the number of values bj{f 0 be
infinite, the above type of formula could still be envisaged in the form of

an infinite string of symbols. Thus any functor of an enumerably infinite
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valued logic f(vl, Vor oo .vn) #0 can be expressed by the

above type of formula. Q.E.D.

THEOREM 2

Any set of functions of the type [, [y &5 ~ }

is functionally complete in any enumerably infinite calculus of

logic.

Proof

The correctness of this theorem is obvious as the types of
connectives listed are the only ones entering in the formula

Theorem 1.

Corollary

If the functor O is completed in such a way so that the
v (Ol =v+1l= v @1, then a set of the type {@3‘33 @}
is also complete. It may be noted that ordinary addition is an (@~
type of functor. An instance of the [[]- type of functor is

ordinary arithmetic multiplication.
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The Implementation and Evaluation of a Fuzzy

Control Algorithm for a Sinter Flant , :

by

D.A. Rutherford,

Control Systems Centre
UMIST

Sackville Street,
MANCHESTER M60 1QD

Introduction

The reported appiication [1] of fuzzy logic to the control of a
dynamic system has led to a sfudy of the applicability of the technique to
the design of a controller for a process where the characteristics are ill

defined. It was applied to the control of the raw mix permeability in an

e

iron ore sinter plant by controlling the rate of water addition. The

moisture-permeability relationship is highly non linear and very variable.
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The Control Algorithm

The control algorithm consists of a group of rules that express
the dependence of one variable upon another. The rules are expressed in

terms of the fuzzy sets A,B,C and D (such as small or large) that describe the

variables X Y and Z. The rules have the form:-

If X is A and Y is B or C then Z is D |

where Z and Y are the inputs and Z the output of

the algorithm.

From the theory of fuzzy logic [QJ it is possible to show that

the fuzzy set describing 2 is given by:-

uy(w) = M&n[lﬁgx [px(u) ERALY uD(w)} .

Mo {uY(v) SRS TR CORVRICHPL TS } 2

where U, V and W are the universes of discourse for the variables X, Y and Z.

For a particular value of w equation 2 can be re-arranged into

a simpler form:-

uz(w) = Ménﬁb(w),{mzx ux(u)a uA(u)} s

(]

“ix[uym A (g (Vvig(v) }
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Where av b max (a,b)

asb min (a,b)
Definition matrices, similar to the one shown in Table I are used
to define the possible fuzzy sets A,B,C etc. over the appropriate inverses

of discourse

g A |
Support Small Medium Large
L
' 1 1 .7 .0
i 2 .7 1 .3
X
| 3 .3 .7 .7
l u 0 .3 1

Table I Definition Matrix for Fuzzy Set A on Variable X

The fuzzy sets describing each input variable X or Y have zero
membership value for all but the mth support in X and the n th support
in Y. This leads to further simplificatioﬁ of equation 3 since,for example |

evaluation of the term

max

HEoy [ux(u} " uA(u)]

reduces to the selection of an element in the column 'A' .that is
identified by the mth row in the definition matrix. Using matrix notation

equation 3 becomes
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pz(w) = Min LW(W,D), U(m,A), Max[V(n,B),V(n,C)]} ceo U

where U, V and W refer to the definition matrices for the fuzzy sets.

If there are J rules then they are combined using the linguidtic connective

(&3]

u (w) = .,
L

Max [
Z.
J

W ..

Given a range of values for n and m, i.e. a range cof inputs,

and values (column numbers) for A B C and D equations 4 and 5 give the mem-
bership value for each support w in the fuzzy set describing the output

variable Z.

Numerical values for the cclumn numbers are obtained from an inter-
preter program that operates directly on each rule expressed as a test string.
The rules are entered one at a time and the text string searched to identify
the mnemonics used to represent the various fuzzy sets. Numerical values to

identify the fuzzy sets appropriate to each rule are obtained and used to

evaluate equations %4 and 5 for each input condition. The resulting fuzzy cutput

set is converted to a crisp value by taking the support that gives the

maximum membership value in the set.

This procedure has been adopted to generate a look up table employed
to implement a control algorithm expressed as rules of the form shown above.
This once and for all interpretation of the rules obviates the need for a
resident rule interpreter in the control scheme and gives a very simple control

system,although on-line modification of the rules becomes difficult.
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Application to the Control of a Sinter Plant

An evaluation of the technique was undertaken on the raw mix
permeability control scheme for a BSC sinter plant. Figure I shows, in block

diagram form,the water addition control scheme used to optimise permeability.

The permeabilityvgrror'and sum of errors were used as inputs to the
control algorithm. The rules defining the algorithm were wriﬁten to embody
experience of plant behaviour and to follow what was considered a reasonable
action to take in a given set of circumstances. Examination of the initial
look-up table showed some inconsistences which were resolved Ly adding rules and

making slight changes to existing rules.

The controller was tuned by adjusting the scale factors associated
with the supports of the fuzzy system variables. This was done on a simulation

of the process based on the best information available.

Performance was satisfactory when preocess dynamic characteristics
and the simulated non-linear moisture-permeability relationship were changed.
Time constant changes were in the range 2:1 and gains in the range 4:1. The
standard deviation of the error due to the simulated permeability neasurement
noise waé slightly less than that obtained when a conventional two-term con-

troller was used.

Plant Trials

The satisfactory simulation results lead to an on-plant trial at

the BSC Cleveland Sinter Plant.
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After start-up no further tuning of the contrcl algorithm was required,
When transients had settled it was found that the permeability standard

deviation was less that that obtained under manual control.

It was also noted that control valve movements were less violent when
the fuzzy logic controller was in use than when a conventional controller was

completing the loop.

Further VWork

The satisfactory performance of a simple fuzzy logic confr@ller
implemented as a loock up table encourages further work. It is hoped to apply
the method to the design of controllers for plants having non-linear dynamic
characteristics and having non-linear performance criteria that are expressed

as a set of heuristic relationships.
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Block Diagram of Sinter Plant Control Scheme
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Current models of semantic memory have been classified into set-theoretic
and network mocels {(Rips, Shoben, & Smith, 1973). The set-theoretic
modiels (e.g., Meyer, 1970; Schaeffer, & Wallace, 1970; Smith, Shoben, &
Rips, 197La) proposethat the meanings of words are represented by sets
of semantic elements or features. Network models(e.g., Coliins, &

Quillian, 1969; Rumelhart, Lindsay, & Norman, 1972), on the other hand,
represent word meaning by interconnecting nodes with labeled relations

in a2 network system. Bollan{(1975) has argued that the Smith et al.{(197h4a)
model is isomorphic with a network model translation and that the distinction
between semantic memory models is vacucus. The present paper intends to

snow that the Smith et al. model can be reinterpreted in terms of a fuzzy
set-thecrstic (FST) model, which is a more fundamental mode1,>and that

the true distinction in semantic memory models 1is between network models
with differing structural acsumptions.

In Zadeh's (1965) formulation of the theory of fuzzy sets, each element
(x) of & set(A) is characterised by a membtershiy (characteristic) function
fx:A~(C,l) which associates with each element in A a real number in the
unit interval (C,1), with the value of fx at x representing the "grade
of membership” of x in A. Srith et al.(1974b) have only introduced the
theory cf fuzzy sets as a means of describing the degrees of truth of
propositions, an apprcach which i1s consistent with the semantic relatedness
effects in sentence verification. Goguen(19¢7) has generalised Zadeh's
system by replacing (C,1) by some more reneral mathematical structure,
such as a completely distributive lattice or a semiring. As an extension
of this generalisation, Goguen(1974) was able to show that concepts are

fepresented by fuzzy sets by proving that the category of concepts satisfies
the axions and theorems of fuzzy sets. A FST model of semantic nemory

represents the meaning of a word as a set ¢f semantic elements in which
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¢zcn element is graded as to its importance in the definition of the word.
The FST model is equivalent to the Smith et 21.(1974a) feature model in
that the defining and characteristic features of a concept as specified
in the feature model are the elements of the fuzzy sets. Also, the salience
0f a given feature to the definition of a concept is characterised by its
memvership function. The somewhat arbitrary partition of features into
defining and characteristic can be represented as a threshold membership
function; above a certain membership function value the elements are classed
as defining features, and below it &s characteristic features.Hence,all
the structural assumptions of the Smith et al. model are sstisfied, and
the FST model provides a descriptive interpretation.

As Hollan(1975) proposed any set-theoretic model can be mapved onto
a network model by the procedure that he describves; the FST model is no
exception. The elements of the fuzzy set associated with a c§ncept would
‘be transformed into nodes connected to a common concept ncde. The membership
functions would be assigned to the edges of the digravh, indicating the
imvortance of the two nodes to eaﬁh others definiticns. Gogzuen(1974)
proposed é sicilar model in terms of hierarchies of fuzzy sets,i.e.,
fuzzy sets of fuzzy sets of.... fuzzy sets, for all finite levels. As
the transformed FST model iz isomorphic to the Smith et al. model then
the processing assumptions of the feature model should not ¢only be capable
of satisfaction within the FST model, but also within its network counterpart.
The two stage model posited by Smith et &l. could be realised as a mapping
process in the network system(Simmons, 1973) in which the firét stage
is a mapvning of the total concept network{i.e., defining and characteristic
features) between subject and predicate ncdes. The second stage would
consist of the mapping of the subset of the subject concept network where
the subset ig defined in terms of the elerents having a minimum membership

function (i.e., only defining features). It is obvious that the FST model
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is & more fundamental description of a set theoretic approach as it does
not entail any partition of features into defining or characteristic; a
partition yet to be explained by Smith et =al.

According to Rips et 21.(1975) it is in terms of processing assumptions
that the set-theoretic and network models separate, particularly the
processes involved in statement verification of the form An S is a P

¢.8., An apple is a fruit). The set-theoretic processes assume that the
verification time is dependent upon the similarity of the subject-predicate
pair by the comparison of semantic elements, while network models assume
the verification time to be associated with the retrieval éf pathways
between the subject and predicate concept nodes. As the FST model makes

the same assumptions as the feature model for both structure and process,
and as the FST model also has an isomorphic network representation, then
it should be possible to apply the same processe;ga network representation
of the FST model. If the FST model is isomorphically mapped onto & network
representation then the processes required for statement‘verification would
necessitate the following matching processes:

(e) A match between the subject and predicate networks, the extent of the
networks being defined by some arbitrary minimal index or membership value
for the links or edges. |

(t) & short-range match over the same networks; this time the extent of

the networke is defined by an arbitrary threshold membership'value which
partitions the network into defining and characteristic sub-networks.
Both of these matching processes can be simulated by a search through the
predicate and subject networks starting at the subject and predicate concept
nodes. The searches from each of the nodes would be breadth-first and the
weight given to any intersections which are found is a function of the
mezbership values attached to the links which meet at the node. This type

of search is very similar to the search processes posited by the original
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rnetwork mocels of Quillian (Collins and Quillian, 1969, 1972).

In summary, by considering the Smith et al. set-theoretic model as a
specific form of the general FST model, it is possible to directly transla-
te the feature model into a network model with identical structural assump-
tions and similar processing assumptions. A proliferation of semantic
memory models could be produced by merely starting from different termino-
logical viewpoints. However, it is safe to say that the majority of these

models would merely be different forms of the general FST model embedded

in different terminology.
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Possible applications of the theory of Fuzzy Sets to the study
of semantic memory.
1) What is semantic memory?
Semantic memory is that part of long term memory which is involved in
the comprehension of language, or to quote Tulving,
"Semantic memory is the memory necéssary for the use of language.
It is a mental thesaurus, organised knowledge a person possesses
avout words and other verbal symbols, their meaning and referents,
about relations among them, and about rules, formulas, and algor-
?thms ﬁor the manipulation of these symbols, concepts, and relat-
rons: Endel Tulving (1972, p.386)
In the study of semantic memory we are concerned with the representation
of knowledge within the human memory. This field is in many respects almost
identical to the study of knowledge representation . . A.I.; the study of
semantic memory provides the psychological validity for the ‘4.1, models
of knowledge representation. |
The various models of semantic memory which have been developed can
be divided into two classes; network models and set-theoretic models. This
division, however, is somewhat artificial in that the get-theoretic models
can be transformed without loss of specificity, into network models which
have the same structural and processing assumptions, and vice versa , the
network models can be transformed into set-theoretic mddels. In fact, the
two classes of model can be shown to‘be specific types of a general class
of Fuzzy set-theoretic (FST) sémantic memory models (paper(a)).
The main structural assunptions for the class of FST models are the
following,
(a) Concepts (which are indistinguishable from concept meanings) are
represented by sets of propositions of the form R(A,B) where A and B are
concepte and R is the relation which holds between the concépts. Thus, the
concept A can be represented as {Rl(é,Bl), RZ(A,BZ),.......,Rn(A,Bn)}.
(b) The sets of propositions are ordered according to their importance

for the meaning of the concept. Thus, if the concept A is represented as
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above then associated with each proposition R(A,B) there is a membership
value bA,B which is a measure of how important the proposition R(A,B) is
for the concept A.

{(c) Each and every concept is represented in this way so that the concepts
which are elements of a concept's seit of propositions are themselves sets
of propositions with other concepts as elements.

(d) The relations between concepts are themselves concepts and consist of
sets of propositions, and thus R could be represented in the same way as A.

(e) The relations can be inversed, but the membership values are anti-symm-~

etric, that 1s, by, py# Dp-lip 4y»

As each and every concept is represented in this way then the 'universe of

concepts' must consist of a 'universe of fuzzy sets' (Goguen, 1974).

2) Sources of Fuzziness.

Qur Semantic memory is built up over our lives and it is built up out
of experience, Qur experience, however, is continuous; experience does not
arrive in little discrete packets, but flows, leading us imperceptibly
from one state to another. Thus, our semantic memory is based on a conti-
nulty, and memory for what has been perceived incorporates some of this
continuity. It haigagen acknowledged by philosophers and more recently
by psychologists and linguists that words do not have distinét, gharply

delineated meanings. Wittgenstein in the Investigations expounds at length

on this problem with respect to the single word 'game'. More recently, the
linguist Labov(1973) has demonstrated the fuzziness of the word 'cup'.

We encounter many ordinary objects that are clearly and easily named, but
many more where it is difficult to say exactly what they are if we confront
them directly. A moment's thcught about a paradigmatic example of reference
reveals that the range of applicability of a word is fuzzy. While there is

universal agreement as to what is a prototypical red, it is obvious thet its
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limits azre indeterminate. One could put the question : How much can one
change an object before it ceases to be the object it was? Presumably, only
when 1t ceases to be what it was do we finally cease to call it what we did.

The above argument highlights the fact that with logic and language we
are dealing with discrete symbol systems which map onto some type of con-
tinuum of concepts. Thus, communicaticn requires us to convey what is
usually some kind of corntinuum by using discrete symbols. Words map onto
concepts but the concepts they map onto are not identical; consequently
the process of mapping words onto concepts needs to be sufficiently
filexible to enable the most varied members to be referenced by their vroto-
typical words. If there is any sense in maintaining thet words have fixed
meanings it can ounly be that indevendent of context they relate to their
proto-typical non-linguistic counterparts. Thus, in semantic memory, two
networks are required; a lexical network which stores the ﬁames of conceptis
and which is organised zlong lines of phonemic and orthographic similarity,
and a semantic network which is far more complex and incorporates various
continuum. The lexical network maps onto the semantic network by means of
the name relation,N. In accordance with the argument outlined above, the
name relation is a fuzzy relation of the form f:N(WxC)—»V where W is the
set of all words, C is the universe of concepts, and V is some algebraic
structure.,

One of the problems alluded to in the azbove argument was the continuity
aspect of semantic memory and one aspect of this continuity is the memory
for real-world variables., Variability information must be an dintegral
conponent of the memory for concepts and a necessary compoenént of memory
models. In fact, any model of working memory which fails to deal explicitly
with such a salient characteristic of a real-world concept as its dimen-
sional variability is fundamentally inadequate. In traditional models of
semantic memory it was assumed that physical property information is stored
in discrete attribute value form, but this has been shown not to be the

case (Walker, 1975). To overcome this difficulty it seems reasonable to
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propose a more elaborate memory model which incorporates subjective distri-
butions of vhysical variability. These distributions need not be stored in
semantic memory but could be generated when needed by examination of
exemplars. The exemplars could be extracted from the continuous experience
stored in the other areas of memory and brought into semantic memory as
a fuzzy set of exemplars with the name of the prototypical object mapping
cnto this set. It remains to be established how much of the information in
memory is stored in exﬁlicit form and how much is computed by little under-

stood processes of fuzzy inference(Zadeh, 1972; Carbonell & Collins, 1973).

3) Fuzzy sets and the realisation of membership values.

The membership values attached to each link in the network modelé have
been called criterialities or importance tags{Quillian, 1969; Carbonell &
Collins, 1973). The psychological realisation of these values has been
treated in slightly different ways. In Quillian's original theory the
membership values were defined as criterialities, which are numbers indi-
cating how essential each link is to the meaning of the concept. In
Collons and Quillian(1969, 1972) links were assumed to have differential
accessibility (i.e., strength or travel time). The accessibility of a
proposition depends on how often a person thirnks atout or uées the propo-
sition in connection with the concept. Wnether criteriality and accessibil-
ity are treated as the same or different is a complex issue, but network
models allow them to be treated either way. It is difficult to know
whether these two terms are merely describing the same phenomena in diff-
erent ways, or whether membership value is some function of accessibility
and criteriality. This is essentially a psychological problen.

There is the interesting problem, untouched by Collins and Quillian,
of how to model the criterialities or accessibilities. In Carbonell and
Collins(1973) the importance tags were modelled by the integers from O to

6. The lower the tag, the more important the peice of information is. The
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tags add up as you go down through lower embedded levels. Thus, the
¢riterialities are rodelled by the monoid [9,1,2,3,&,5,62‘ with the binary
operation +. 4lso, Ly using the property that the value 6 is some sort of
default value, such as 'IF 6 THEN SUPPRESS PRINTING', then the monoid
can be said to have an infinity element; a + 6=6. |

In many cases the above model would be unsatisfactory, and a better
model would be a’multiplicative monoid such as (J,x,1) where J is the unit
interval [@,i]. This structure would be particularly suitable for the FST
semantic menmcory model as the number propositions which comprise a concept
iz usually extremely large and would, therefore, reguire a contiruous

interval.

4) Context Dependency.

48 stated above, it has for a long time been known that the meanings
or referents of words are context devendent, and further the structure
required tc relate the concepts utilised in understanding language is
context-dependent. Different contexts may necessitate different and in
scme cases even incompatible structures which cannot coexist. From this
it would follow that our knowledge is not structured in a static manner
but is reorgsnised during cognitive processing. Weinreich (1966) has
argued that the sense of a word changes from sentence to sentence, Consider
Weinreich's example of the verb 'to eat' in the phrases'eat steak','eat soup',
'eat an apple'. Tating zn apple reguires no utensil. Soup is sipped with
a spoon. Fating a steak requires a knife and fork. In each case the
actions of the 1lips, teeth and tongue are different. The general point is
that a word could have different meanings in a very large number of
sentences in which it might appear, even when there is some core meaning
as in'eat’'.

To model these sorts of dynamic processes we require a flexible,

dynamic conceptual system in which the structures of the concepts are
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altered from context to context. In the FST model this requires a process
which can remap the concept set onto the unit interval, J. Thus, the fuzzy
set of proypositions which rerresents a concept would vary with context, and
over contexts (hence, over time) the concept A would be represented as
~»J, f :C§~>J, where C, is the subset of the

f01°C4 c2 Cn 2
tuniverse of concepts'which holds all the propositions which forms the

;CA——)J,.‘..‘., f

concept A, J is the unit interval, and f is the fuzzy set with the subsc-
ipt C(l-$n) which denotes the context. This model is similar to the time
dependent fuzzy sets proposed by Lientz(1972).

Within semantic network systems, the context model described above can
be realised as a plastic memorial networx in which the following properties
hold;

(2) The accessibility indicies which are attached to each link in the
networkx, are a function of relevant experience.

(b) The model assurmes continuous development of the accessibilites from

the time of the first encoding.

(¢) Besides the relatively permanent improvement, the model also assumes

a temporéry improvement in the accessibilities as a function of recent
experience(context). This temporary improvement is achieved by means of

the spreading activation model., In this model, when a concept is processed
(or stimulated), zctivetion spreads out along the paths of the network in

a decressing gradient. The decrease 1s inversely prceportional to the acc-
essibilities of ‘the links in the path. Thus, the activation is like a
signal from a source that is attenuated as it travels ocutward. The nodes
and links which activated are temporarily more accessible, and thus, the
structure of non-activated concepts can be adjusted by the spreading effects
cf activated concepis.

This type of model is still along way from being complete, but it is a step
towards a context-dependent knowledge representation which has all the
dynamic properties of human knowledze systems. The use of context-dep-~
endent fuzzy systems will be imperative in simulating the dynamic aspects

of human knowledge.
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One other concept which is potentially quite useful for the modelling
of concepts or word =esnings is the concept of the 'entropy' of a fuzzy
set. Deluca and Termini defined the entropy of a fuzzy set as,
x & y
a0 x T s(20xy))

where S is the function S(x)=1 -xlnx - (1-x)1n(l-x), X is a constant,and

f(x is the membership value for the element Xy . DeLuca and Termini(1972)

o)
show that d(f) is a measure on a psuedo-metric space with respect to the
distance function §(f,g) =|a(f) - d(g)|. %hen applied to the modelling:
of concepts the entropy of a concept would be a measure of how fuzzy the
concert is. The fuzziness of a concept might well relate or be a function
of the abstractness of the concept. Further, the entropy of a concept
would vary from context to context, and so, the variance of the entropy
measure over different contexts would give a measure of the flexibility
of the conceprt. Thus, the concept of entropy would be very useful in

modelling certain gquantitative aspectis of concepts. Such a measure could

be easily incorporated into a semantic nmemory model.

Conclusions.
With language being a discrete symbol system and with

exverience being continuous in nature, it is not surprising that fuzziness
runs through the whole of our language. Thus, in modelling the memory
invelved in the use of language it 1s also not surprising that any theory
which deals with fuzziness is extremely useful. As the theory of fuzzy
cets is developed, each new theoretical notion nmust be considered with
respect to its possible applicaticns fcor the modelling of semantic memory,
and language in general.

Jon M. Slack
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SUBJECTIVE EVALUATION OF FUZ2Z2Y OBJECTS

T T
Michio SUGENO, Yahachiro TSUKAMOTO, Toshiro TERANO

SUMMARY

This paper discusses fuzzy measures and fuzzy integrals presented
by one of the authors and deals with two applications of fuzzy integrals.

Fuzzy measures are monotone set functions which are not necessa-—
rily additive. Those are defined as subjective scales for fuzziness.
Fuzzy integrals are the functionals with monotonicity defined by using
fuzzy measures. Those correspond to probability expectations aﬁd are
discussed in comparison with Lebesgue integrals.

Application problems are concerned with subjective evaluation of
fuzzy objects. One of them is the evaluation of female faces and the
other is that of the residences. In those problems, a fuzzy integral
model is proposed to express a man's subjective evaluation,process. The

model 1s experimentally tested.

3. INTRODUCTION

In recent years, artificial intelligence, behavioural science,
and human engineering, etc. which originated in cybernetics have found
many applications in all fields of engineering. Together with this
tendency, a variety of problems on human subjectivity which was studied
first mainly in psychology have become problems in engineering. Here,
a Tundamental doubt is directed toward the fact that engineering has

been ingquiring objectivity by eliminating subjectivity.

T Department of Control Engineering, Tokyo Institute of Technology,
Oh~ockayama, Meguro-~ku, Tokyo 152, Japan
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Concerning subjectivity among the characteristics of men which
are superior to those of machines, L. A, Zadeh presented in 1965 the
concept of fuzzy sets ([1], which has given a powerful means to deal
with subjectivity by metheds of mathematics as well as engineering.
Since his proposal, fuzzy sets theory has Abeen widely applied in the
fields of automata, linguistics, algorithm, pattern recognition, decision~-
making, and so on.

The concept of "fuzziness" corresponding to randomness‘in proba-
bility theory is introduced in the fuzzy sets theory. Here, fuzziness
is defined as a kind of uncertainty which is caused by subjectivity
and belongs to the side df subject. On the other hand, randémness can
be considered as one caused by random phenomena, i.e., objective and
physical phenomena.

One of the authors has presented the concept of fuzzy heaéures and
fuzzy integrals [2, 3, 4] which are expected to have many applications
in engineering, Fuzzy measures are defined as subjective scales for
fuzziness. Fuzzy integrals are the functionals with monotonicity defined
by using fuzzy measures. Those correspond to probability expectations
and are discussed in comparison with Lebesgue integrals.

Algebraic methods have been mainly used to approach fuzziness so
far, while analytical methods have been seldom explored. Fuzzy measures
and fuzzy integrals belong to analytical methods which make it possible
to deal with fuzziness qualitatively and quantitatively.

Fuzzy measures are set functions with monotonicity which have not
necessarily adaitivity; while the set functions which have been investi-

gated in mathematics are mostly endowed with additivity such as Lebesgue
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measures. With this point of wview, the feature of this paper will be
seen where monotone set functions are studied and their applications
to subjective evaluation problems are discussed.

In the applications a model of subjective evaluation on fuzzy objects
is developed by using fuzzy integrals. The ability of the mcdel is experi-
mentally tested in two examples; one is the evaluation of female faces

and the other is that of residences.

2. FUZZY MEASURES

The measures discussed so far in the theory of Lebesgue integrals
or in probability theory are the set functions with additivity. Here,
extending the concept of the measures, "measureé" as monotone set func-
tions which are not necessarily additive are considered: The concept of
"measures" discussed in this section can be summarized in three state-
ments concerned with grade of fuzziness.

Now, let X be an arbitrary set and ¢ an empty’set. Let x denote
an element of X and let A, B, etc. denote subsets of X.

First, suppose that a person picks up an element x out of X, but
does not know which one he has picked up. Next, suppose that he guesses
if x belongs to a given subset A. It is uncertain and fuzzy for him
whether x€ A or not. His guess would become subjective when there are
few clues for guessing. Assume in general that a human being has a sub-
jective quantity called the grade of fuzziness measuring fuzziness such

as stated above. Then the statements are described as follows:

(1) Grade of x€¢ = 0 and grade of x€X = 1.

(2) If AC B, then grade of x€A < grade of xg B.
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The third statement concerned with continuity will be seen in the defi-
nitien of fuzzy measures.

By thé texrm, "the grade of fuzziness", the quantity which depends
heavily on human subjectivity is implied. When a man says that an object
is uncertain, two kinds of uncertainties can be considered. One is uncer-
tainty due to the lack of information and knowledge. This uncertainty is
an objective one which is characterized by the nature of objects and the
circumstance surrounding them. For instance, the probability of the
result of throwing a die is independent of a subjectivity and dependent
only on the nature of the die and its circumstance. The other is the sub~
jective uncertainty due to human subjectivity: the niceness of a woman's
face is affected by a man's subjectivity besides her looks;‘The objective
uncertainty is called randomness and the subjective one fuzziness.

The grade of x €A is merely an abstract example of the grade of
fuzziness. As a more concrete example, "the grade of importance" stated
later in the applications can be considered. Though it may be adequate
for uncerstandings of the statements that the grade of importance is
picked up, it is not mentioned in this section.

Now, fuzzy measures for expressing the grade of fuzziness are

introduced. Let {8 be a Borel field of X. R has the following properties.

1) ¢e®

(2) If Ee¢ )R, then ECe B.
fee]

{(3) 1f EnEB for 1 <n < «, then UE € B.
n=1

[Definition 1) A set function g defined on &5 which has the following

properties is called a fuzzy measure.
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(1) gi{¢) = 0 and gX) = 1.
(2) If A, Beld and A B, then g(a) < g{B)

(3) If F € B and {Fn} is monotone, then lim g(F ) = g(lim F ).
nre e

O

Here, (1) means boundedness and non-negativity, (2) monotonicity,
and (3) continuity. The property {2) is the most important one and (3}
is essential only when X is an infinite set.

In the above definition g(A) is the expression of grade of x€ A,
In general, g(&) is intexpreted as a subjective measure expressing the
grade of fugzziness of a set A. Of course, this does not necessarily mean
that A is a fuzzy set. Though A exists objectively for any one, it is
regarded fuzzy since it is associated with subjectivity when a person
guesses, for instance, grade of x€ A. In probability theory, a set A is
called an event. But the terminology "event" is not used because it is
desirable to distinguish grade of fuzziness from probability {(grade of

randomness) .
[Definition 2] (X, B, g) is called a fuzzy measure space.

Here g is called a fuzzy measure of measurable space (X, ES ) . When
the domain of g is evident, g is simply called a fuzzy measure of X.

Now, additivity is the most important properxty among the proper-—
ties of ordinary measures. It is, however, doubtful that an individual
uses a "measure" with additivity when he subjectively measures fuzzi-
ness. Though a reasonable man is imagined in the theory of subjective
probabilities, it would be more realistic to assume that an actual man

has no additive measure, because his behaviours are often contradictory
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to the assumption that he uses an additive measure in evaluating things.

Monotonicity is a very natural assumption on the subjectiﬁe judge~
ments of an actual man, while additivity is a restrictive one. In many
applications, it can be easily accepted that if A C B, then grade of
X €A < grade of x€B.

Further if the statements are adopted for the conditions satisfied
by a man's subjective measure, it would be pointed out that the inter-
Pretation of subjective measures becomes rather free in comparison with
probabilities. It is very difficult to explain, for instance, the grade
of importance in terms of probabilities, which will be discussed in Sec-
tion 4.

Now assuming for simplicity that X is a finite set X, a fuzzy meas=-
ure of a fuzzy measure space (K, 2K, g) 1is constructed in the following
way. Two types of fuzzy measures are proposed in this paper. Those can
be easily extended to an infinite case.

Let K= {s), s,, ------ , s } and
0<g <1, 1<1i<n. ()

g:L is called a fuzzy density.

(&) Let
1 n

X‘[H(l-l—?\gi)“l}-“-l, S1 < A< w, (2)
i=1

Define for XK' C K

gA(K')=%[ I (1+ Agh) - 17. (3)

s, € K!
i

Then gx satisfies all conditions of fuzzy measures. From the definition,
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it is obtained that
g, s, ) =g, 1<i<n (4)
A8 P 4 212D,

and that if K'Y K" = ¢, then

1

gA(K'LJ K") = gy (K') + gx(K") + lgA(K‘)gA(K"). (5)

When A = 0, g, becomes additive and, hence, equal to a probability
measure. gy is called type A. It follows from Eg. (5) that if Xﬁp,fthen
g, (K'U K" <-gy {(K') + gy (KY), (6)

and if A>0, then

gy (K' U K") > g, (K') + g, (K"), (7)
(B) Let
n i n i T
(1-A) g + AL g =1, 0<ZA<1. (8)
i=1 i=1

Define for K' C K

&) =0-0 V g +r i gl (%)

) rt R Kl
sle K sle

%
When A = 1, 95 becomes additive. There holds, if XK'M K" = ¢,
* ] (1] < * 1 * " ’ (lo
g;\(KUK)“gA(K)"'g}\(K). )

This is called type B.

3. PUZZY INTEGRALS

In this section, fuzzy integrals are defined by using fuzzy mea-

sures shown in Definition 1.

T

n )
aV b=max (a, b), aA b =min (a, b), \/ a, = max {a,}.

. i :

i=1 1<i<n
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[Definition 3] Let h : X » [0, 1] be B—measurable function. A fuzzy

integral over A is defined in the following form.

fAh(x)ogb) = sup [Ot/\g(AﬂFa)l'

a€ef0,1]

where F, = {x|h(x) > al.

In the above definition, the symbol 5 is an integral with a small bar

and also shows a symbol of the letter f. The small circle is the symbol

of the composition used in the fuzzy sets theory.

Hereafter, it is assumed that all functions discussed in this paper,

including constants, have the range [Q,1]. For simplification, a fuzzy

integral is written as SA hog{*) or gA hoeg. In the case of A = X, it

is written briefly as f heg. Fuzzy integrals have the following proper~

ties.

Let a € [0,1], then
‘ang(‘) = a,
fy (avh)og{*) = avfh og(*),
&(aI\hNg(‘) = a:\f}wg(').
If h < h', there holds

gh o gl*) < )(h* o g(+).

If A C B, then there holds

)(Ahogmf_ )(Bh °g(-).

(1)

(12)

(13)

(14}

(15)
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If {hn} is a monotone seguence of Ea-measurable functions, then

lim hn o g = §’lim hye g. C1s)
e nHo

If{ hn} is a monotone decreasing (increasing) sequence of’&S-ﬂneasur—
ble functions and {an} is a monotone increasing (decreasing) sequence
of real numbers, then

‘g [\/‘(an,:\hn)} o g=V [an’\](hn ° gl. (17)

n=1l n=1
= : i > >
There holds &AA heg M if and only if g(A(\FM) > M -g(A'r\FM+O)'
= > = > N
where F {x|h > M} and Futo {x|n > M}
. The fuzzy integrals are very similar to the Lebesgue integrals in

their definition. Let h{x) be a simple function such that

o, (x)F (18)
i"E,
1 1

0o

hix) =
i

n
where X = 5_51 E., E €8, and E;NE; = 0(i7)).

In the measure space (X, E},Il), the Lebesgue integral of h over A is

defined as

n
SA h au = izl Gﬁiu(Af'\Ei) . (19)

Here assume 0 E_ai <1 {1<1i < n) and al ﬁ.az AT f_an. Let fur-

ther F, = E. + E, + -+ev+ E (1L <1i < n). Then a simple function h(x)
i i i+l n —

can be also written as
n

hix) = fo, A Xg x)1, (20)
i=1 i

T . )
Xg (¥) = 1 if x€E and X, = 0 if x §E.
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and two exXpressions are identical. With respect to a simple function
h on X, there holds
n
](A hog(s) = ’\[ la;nglanF )], (21)
i=1
The similarity of Lebesgue and fuzzy integrals is clarified by compar-
ing Eg. (18) with Eg. (20) and Eg. (19) with Eq. (21), respectively.
Next a quantitative comparison is tried. Let h be a [ -measurable
function. Then both integrals, fuzzy and Lebegue, with respect to a
probability measure P can be defined and the following inequality is
obtained. Let (X, B ,P) be a probability space and h : X + [0,1] be

a (3 -measurable function, then there holds
| h(x) dp - hix) o P(*)]| < L (22)
X X -4

Since the operations of fuzzy integrals include only comparisohs of
grades, the above inequality implies that using only V- -and A , a value
different by at most 1/4 from a probabilistic expectation can be obta-
ined.

A fuzzy integral in (K, 2K3 g) is calculated as follows.
Let h : K - {0,1]. Assume h(sl) f_h(sz} < eeenn §~h(sn)' If not, rearr-
ange in an increasing order.
Define

K={SIS

N i i+1""”'sn}' 1<i<n, (23)

Then it is obtained from Definition 3 that

n
§K nis) e gl+) = V [als) Agx)]. (24)

i=1

10
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There exists at least one Jj such that
h(sj_l)f\g(Kj_l) j_h(sj)f\g(Kj): (25)
(s )Ag(K) 2 his; ) A g(Ry,). (26)

Clearly, there holds for this j
heg=h(s,)AglK). (27)
)[K g = h(s,)AglK,

Thus, the value of a fuzzy integral is obtained without evaluating
h(si)A g(Ki) for all i's. More precisely, it is necessary for the cal~
culation of a fuzzy integral to evaluate g(Ki) at least for only three
different i's., This fact is a very excellent one in comparison Qith
orxdinary integral calculus.

A fuzzy integral is also called a fuzzy expectation in the sense
of comparing it with a probabilistic expectation. As can be clarified
from the preceding discussions, the essential difference between a pro-
babilistic quantity and a fuzzy one is that the former has additivity
while the latter has only monotonicity. Therefore the meaning of differ-
ence between "randomness"” and “"fuzziness” can be grasped through the
difference between a probability measure P and a fuzzy measure ¢.

As is‘well known, the essential property of ordinary integrals is
additivity stating that the area of a figure consisting of a triangle
and a sguare egquals the area of the triangle added by that of the sguare.
Apart from visual figures such as a triangle or a sguare, "area" in
a mathematically abstracted world is something with additivity hidden
behind objects. fhis Yarea" can be measured by means of integrals which

are constructed by measures with additivity. Thus it is possible to

11
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state that measures with additivity are used to measure quahtities with
additivity and also suitaple for this purpose.

Now assume that objects have not additivity but at least monoto-
nicity. By what means can such objects be measured? Of course it may be
possible to measure those by the ordinary measures. But their additivity
does not seem to suit the objects which have no additivity. The fuzzy
measures introduced in this section have monotonicity but not always
additivity. Is it not expected that fuzzy measures are more suitable

than ordinary ones to measure the objects with only monotonicity?

4. APPLICATIONS

In this section, fuzzy integrals are applied to the problems of
subjective evaluation of fuzzy objects. Fuzzy measures, as has been dis-
cussed in Section 2, are considered as subjective measures for grade of
fuzziness. When application problems are discussed, however, it is con-
venient to interpret fuzzy measures more concretely. This will be dis-~
cussed in the examples of applications in this section.

Now when a human being tries to measure and evaluate the objects
which seem fuzzy, his evaluation is related to both, the nature of the
objects and his own subjectivity. In genefal, there appears in the process
of subjective evaluation the complicated interplay between the objects
and the evaluater's subjectivity. In this sense, fuzzy measures should
be considered to change their properties affected by the both of the
objects and his subjectivity.

The evaluation problems tfeated so far in systems engineering are

mostly those which are based on objective standards, e.g., the perfor-

12
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mance indices of optimal control systems. However, the evaluation
problems are discussed here which lead to different results according
to the subjectivities of the individuals evaluating the objects.

The concept of fuzzy measures is powerful particularly for dealing

with these problems.

4.1 Subjective evaluation of female faces

Here,.the problem of the evaluation of female faces is discussed.
Pictures of about 100 young ladies were taken. The boundary conditions
of these pictures are kept constant carefully. Thirty pictures are chosen
at random and enlarged to actual size. Each of these pictures is cut
into five pleces; those are eyes, nose, mouth, chin and all the remains,
as are shown in Figs. 1 and 2. Those pieces are shown to a student (male)
separately and according to his preference they are scored with a nume-
rical value between zero and one. The ideal face is scored one and
the worst 1s zero. Now five values are obtained for each face. Next the
complete picture is shown to the student, who is asked to score it by
the same scoring rule. The problem is how to connect the score of a whole
face with those of pieces.

Generally, when a system is perfectly decomposed into mutually
independent factors, a linear model is usually used to relate the overall
and the partial evaluations. However, if the boundaries among the fac-
tors are not sharp and the factors influence each other, a fuzzy integral
model is one of the powerful means to evaluate such fuzzy objects.

The symbols sl, 52' v ,s5 are used for eyes, nose, mouth, chin

and the remains.

13
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K= {Sl' S., 8.+ 8,, 55}'

2 3 4

From the above experiments, the function
hj : K~ [0, 1] (28)
is obtained where j ig the number of pictures.

If a linear model is used, the preference wj of j~th face is expr-

essed as follows.

5
w., = L

7=

a; hj(si) {29)

Using the fuzzy measure Iy (type A) which is a student's subjective
scale concerned with grade of importance, a fuzzy integral model is intro-
duced as follows. Here, grade of importance means to what extent one

attaches importance to the elements of a face.

Define

ej = §.K hj(s) ° gx(‘). (30)

i

Let ¢ = max {e.} and e min {e.}, where N is the total number of
g 7 12N -
faces. Let dj denote the score of the whole face which is obtained from

the experiment. Similarly, d and d are defined. Now, ej is normalized

so that e = d and e = d. The preference wj is obtained as follows.

d-a de - de
W.'-:_ e.+—__——-——— (31)
i e 3 i-e

The fuzzy measure g}t is identified so as to minimize the following

criterion J.

- ,
= /L - w
J = \/N I w) (32)

14
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When “complex method" was used for hill-climbing, the minimum value of
J was about 0.1,

The comparison of the calculated value w with the experimental one
d is shown in Fig. 3. Fig. 4 shows the fuzzy measures of two students.
In this fiqure, if gi for a specific i is larger than the others, it
means that the student thinks the i-th piece very important. So it is
possible to know from Fig. 4 the characteristics of an individual who
evaluates ladies' faces. As is shown in Fig. 3, the experimental results
show a good agreement with the calculation by the model.

_The process of subjective evaluation can be explained quélitatively
by using the concept of fuzzy measurcs. When a linear model is adopted,
it is difficult to interpret the weighting ccefficients. In Eq. (29),
if a coefficient a; is large, then a partial evaluation h(si) is enlar-
ged. This implies that the value of the overall evaluation increases in
the linear model even if a partial evaluation is small. However, a man
will give actually a relatively small value toc the overall evaluation
when h(si) is small,

On the contrary, in the fuzzy integral model, it can be approxi-
mately stated that if a partial evaluation h(si) is smaller than a fuzzy
density gi, then h(si) contributes directly the overall evaluation and
if h(si) is larger than gi, then the value of h(si} is cut at that of gi.
This implies that a large value of i~th partial evaluation is cut when
the grade cf importance of i-th element is small. Therefore, it could be
said that a fuzzy integral model can explain a human evaluation process
more qualitatively than a linear model. Further it should be pointed out
that the concept of the grade of importance is convenient in represent-

ing a subjective evaluation process.

is
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4.2 subjective evaluation of residences

This section applies a fuzzy integral model to represent the sujec—
tive evaluation process of residences. A residence can be decomposed
into four factors such as Facilities and furniture, Area, Time from resi-
dence to office, and Environment. These factors are important when the
functions of a residence from the physical, psycological and physiolo-
gical aspects of human life are considered. Financial aspects such as
the price of a residence and its maintenance cost are excluded in this
evaluation, because this sort of facters are not regarded as the const~-
raints related directly to the fineness of a residence.

A man's preference for a residence can be expressed with a relation
between the fineness of these four factors and the grade of the impor-
tance which he attaches to each of them.

Let
K = {sl, Syr Sg 34}, (33)

where sl, 52, 33 and 54 show F, A, T and E, respectively.

The value assigned to the fineness h(s) of a factor s is determined
according to the common sense; it is not the value experimentally obta-

ined. Let hF = h(sl), h, = h(sz), h

a = h(s3) and hE = h(s4)' Then h(si)

T

for each residence is calculated as follows.

hF = Q0,la + 0.05b + 0.1lc + 0.2 4 0.1le + 0.1f
+ 0.2g + 0.1lh + 0.051, (34)
where the variables at the right side are the fineness of the

facilities for heating, cooling, water supply, drains, toilet,

gas, bath and garrage, respectively.

16
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h% = 0.87 + 0.2k, 3 (35)
wnere j and k are the degree of satisfaction obtained fron
the floor and the garden space, respectively.

For example, j and k are given as shown in Fig. 5 when a family is

consisted of a couple and two children.

h, = 0.5+ =% tan™ 0.05(60 - &), (36)
where £ is the total time required to go to an oiice from
the residence.

The graph of hT is shown in Pig. 6.

hE = 0.2m + 0.2n +Q0,lo + 0.1p + 0.1g + 0.1r -

+ 0.1s + 0.1lt, {37}
where the variables at the right side correspond to cleann-
ess of air, disturbance by unpleasant noise, fineness of
sun shinning, convenience for shopping, playving, going to
school and hospital, and green area, respectively.

All the samples of the residences used in the experiment are roughly
scored by assingning the value between zero and one to each varigble
from a to t, The values for the aggregated four factors h{si} for l‘i
i € 4 are shown in Table 1.

In this application, a fuzzy measure g; {type B) is adopted as
a subjective measure for preference. According to Egs. (30) and (31),
a fuzzy integral model of preference is cbtained. In analogous way of
the previous section, several subjects are asked to sccore each residence
with a numarical value between zero and one according to their prefer-

ence. Then their fuzzy meausres are identified as in Section 4.1.

17



c.18 264

A linear model of Eg. (29) is also examined in this case and the weigh-
ting coefficients are determined by the same method.

The experimental results for a house wife are shown in Table 2.
From these, it may be concluded that (1) environment is attached high
importance, (2) the importance of facilities and that of area are medium,
and (3) time is ignored. In_her case, almost same conclusions are obta-
ined by the both methods.

Note that in the both applications, the identified fuzzy measures

do not satisfy additivity.

CONCLUSIONS

In this paper, the concept of fuzzy measures and fuzzy integrals
has been presented and two applications have been discussed. A fuzzy
measure 1s a monotone set function and it is regarded as a subjective
scale for fuzziness. A fuzzy integral represents the value of subjective
evaluation measured by a fuzzy measure.

In the evaluation problems of female faces and residences, a fuzzy
integral model has been proposed to express a man's subjective evalua-
tion process. Its effectiveness has been alsc clarified.

It is expected that the idea of fuzzy measures and integrals will

be widley applicable in the many fields of engineering.
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Fig. 5 Grade of Ideal Space of Floor and Garden
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Fig. 6 Grade of Ideal Time from Residence to Office
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Residences | M R g
- 1 | 0.8 | 0.73 | 0.79 | 0.53
2 0.84 0.57 0.85 0.75
3 0.56 | 0.26 | 0.39 | 0.00
4 0.87 | '0.50 | 0.61 0.68.
, 5 0.60 | 0.12 | 0.94 | 0.63
6 0.74 0.80 0.21 0.50 .
7 0.97 |.0.92 0.61 | 0.90
8 '0.66 | 0.41 |.0.85 | 0.68
9 - 0.85 | 0.49 | 0.29 | 0.73
10 0.72 0.57 0.15 0.78
1 0.51 | ~0.31 0.39 0.48
12 0.61 | 0.10 1.00 0.00
13 0.97 1.00 0.94 | 0.80
14 0.68 0.32 | 1.00 0.45
15 0.62 | 0.42 | 0.21 0.78 -
.16 0.64 0.76 0.15 0.80
17- 10.90 0.84 | 0.50 0.83
’ 18 0.71 0.61 0.03 0.80
19 0.95 0.67 0.97 0.70
Table 1 Fineness of Residences
\ hol A T E
coerricient ot | 0.78 | 0,85 | 0.7 | 1.0
Fuzzy 5ensity 0'.‘62 0" 78 0.33 1.0

Table 2 Grade of Preference for Residences

23
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1. Introduction

Several important industrial processes, in particular
the basic oxygen steelmaking process, cannot be saﬁisfactorily
controlled by the use of standard control theory. The
reasons for this are several, but some of these are the lack.
of quantitative information about the process which is
invariably non-linear and multi-variable, and the need to
interfaée meaningfully with the process operator. On ﬁhe
other hand, there is often considerable qualitative information
in the form of standard operator practices which reflect
experience and training. Earlier workers, Mamdani and King
{11 and Rutherford {2] , have demonstrated the usefulness of
Zadeh's notion of fuzziness [3] in the design of control
algorithms based on logical statements about linguistic
variables, and this paper presents some further results from
a preliminary study into the design of fuzzy controllers

for non-linear, multi-variable systems,

2, Simulation experiment

A moderately difficult plant to control is a pressurised

tank containing liquid. This can be represented schematically

as, ’Qw

Qur
P

Q
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where h is the liquid level inside the tank, P is the internal
air pressure, Q; is the liquid inflow and Qy is the air
inflow. The control problem is to regulate both the liquid
level and the total pressure inside the vessel. The tank's
behaviour is governed by two nonlinear differential equations,

namely

dh H%

Tt aH +aq

=7 = by (H"‘h)% + b Q4 + bz(l + b, (H - h))(Qb - qu%)

where H is the total pressure (h + P) and a,, a,, bg, ..., by

are constants which depend upon the physical properties of

the tank,.

One advantage of using this process for a preliminary
study is that it has been considered in the control 1iterature.
In particular, Macfarlane and Belletrutti [4] have linearised
these equations and designed a controller using characteristic
locus methods. Further, using their linearised equations an
optimal stochastic regulator [5] can be designed against which
the fuzzy controller can be compared.

The pressurised tank, called a’headbox in certain paper-
making processes, has four characteristic features which are
important in designing a fuzzy controller. These are -

a. the time constant assoclated with total pressure changes
is much faster than that asscciated with changes in liquid
level

b. both inputs affect total pressure, but only air inflow
affects liquid level significantly

¢c. a positive change in air inflow produces a negative change

in liquid level
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d. the process is stable for small perturbations about the

operating point

3. Algorithm structure and design

Because the headbox has two very different time constahts,
the algorithm concentrates on bringing the liquid level to
the set point before attempting control of total preésure. It
does, though, try to minimise the change in total pressure
which results from control action designed to regulate liquid
level. Regulation of total pressure is only attempted when
the liquid level is approximately at its set point,.

Since air inflow 1is thé only input which alters liquid
level, it 18 used as the main control variable. Because
airflow also changes total pressure, the other input, liquid
inflow, is used to counteract these changes. When liquid level
is under satisfactory control, liquid inflow becomes the main
control variable since it is the only one which can affect
total pressure.

Another general feature of the algorithm is that, since
the process is stable about the operating point, in situations
where the control policy is not obvious the algorithm makes
no change to the controller output.

Following Mamdani and King, the inputs to the algorithm
are error and change in error but in contrast to them, and
Rutherford, the outputs from the algorithm can be either
absolute values or incremental values depending upon the size
of the error. If the error 1s "large", then the outputs take
absolute values, and only when the error is "small" does the

algorithm give incremental control outputs.
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To aid comparison with previous work, the fuzzy sets
have been given similar names to those used by Mamdani and

King, and some of the rules used are shown below,

e, =ANY, de,= ANY, €, = P4 03 . dens PM Then  dQizNM ., dRayz PM

IF &= PP, deys ANY, €p= 2E, d@ = ZE  THEN d@i= N8 .« dQai = ZE€

[F Cu= NGAPB . deuz=Ary, EyePB.de ANy TR QU= WN®. Qai = Pm
where “e“,eh are the pressure error and level errors
respectively, de,, dey, are the changes in the errors and Q:
and Q@ are the liquid and air inflows. The complete algorithm
has 37 incremental rules and 9 absolute rules. It is not
necessarily the "best" controller'for this process but is a

useful vehicle for experimental purposes.

4, Algorithm implementation

As pointed out in earlier work, it is possible to "tune"
the rules at several levels. Firstly at the level of the set
definition, secondly at'the level of the support set definition,
and finally at the level of the rules'themselves. ﬂndoubtedly,
the latter is more powerful but, in engineering situations,
changing the support sets is probably easier since it is
equivalent to changing the loop gains of the controlled brocess.
The primary aim of this study, then, was to assess the
sensitivity of the algorithm to changes in its implementation.

A secondary aim was to observe the performance of the controller
in a noisy environment,

The support set for error and change in error was the
set of real numbers which was divided into seven discretised

levels, namely
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Level Range

1 e ¢ ~0.,5
2 -0.5 £ e < -0;2
3 -0.2 € e € -0.1
b -0.1 € e < 0.1
5 0.1 < e § 0.2
6 0.2 <e £ 0.5
7 0.5 <e

The support set for the control output was also the set
of real numbers but was approximated by five discrete points,

namely
U = {-10.0, -1.0, 0.0, 1.0, 10.0 }

The single-valued measurements of the process were
considered to be fuzzy singletons and the output control set
was derived by using the compositional rule of inference.

The single-valued control action was chosen from the control
set by selecting that with the maximum membership function
value,

A diagram of the simulation configuration is shown in
figure 1. An amplitude constrailnt is imposed on the control
inputs to the process thus simulating a control valve which is
either fully open or fully closed.

The results of the next section show the effects of
changing the range of the control outputs from the incremental
rules in the algorithm by changing gains G and G . They also
demonstrate the effect of changing the process sampling interval

and the effect of adding noise to the measurements.
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5. Simulation results

The simulations consist of five experiments, The first
three of which investigate the response of the process to changes
in the set points. The fourth experiment compares these
responses with those of the controller designed by Macfarlane
and Belletrutti. The final experiment compares the performance
of the fuzzy algorithm with both Macfarlane and Belletrutti's
controller and an optimal stochastic controller when noise is
present in the measurements. Not all the results of these
experiments are shown here but can be found in reference [6]

which has full details of the contrel rules.

5.1 Firast experiment : set point change

The first experiment examines the response of the process
when both set points are increased by +1.0. FPFigure 2 shows
the response when G, = G; = 0,1, the sampling intérval is 0.1ls
and there is no noise present. In common with all the results
shown in this section, the zero line is the nominal steady state
of the proéess. This corresponds to a liquid level of 3 ft.,
a total pressure of 16 ft. of water, a liquid inflow of 24 cu,ft./s
and an air inflow of 26 cu.ft./s,. |

Notice how, in figure 2, the characteristic features of
the algorithm are exhibited. The controller works hard to
bring liquid level near its set point. Only when this is achieved
is direct control of‘total pressure attempted. Notice also
the two phases of the controller. In the first three seconds
when the error is large, the algorithm gives absolute values
of control, thereafter, the error is small and the algorithm

has an incremental output.
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The controllied response is therefore seen to be quite
good. The open loop-time constant of liquid level is of the
order of ten minutes whereas, using the algorithm described,
liguid level is brought to its set point within 20 seconds
under closed loop control.

Figure 3 shows the effect of setting G, = Gy = 1.0 but
leaving the sampling interval unchanged. Notice how the
response is improved, liquid level reaching set point, with
no overshoot, in under ten seconds. This is achieved, though,
at Lhe expense of more vigorous control action.

Figure 't shows the effeckt on this response when the
sampling interval is increased to 2.0s. In many ways, the
response is hetter, but, as the results of the next cection

show, this is not a consistent result.

5.2 Second experiment : set point change

This experiment demonstrates the response of the process

to a change in set point of 1,0 in total pressure aonly,

Figire 5 shows the behavionr when G, - G5 - 0.1 and the
sampling interval is 0,14, Notice the characteristie Limit ecyele of
a non-linear ayasatem., Inecreasing the gaing so that G, -~ Gg -~ 1.0

has the desired effect, see figure 6, of bringing total pressure
to its new set point in about 12 seconds without disturbing
liquid level significantly, However, increasing the sampling

to 2.0s gives rise to oscillatory behaviour, see Figure 7,

5.3 Third experiment : set point change

The final set point experiment examines the asystems

response to o set point change of +1,0 in liquid loevel only.,
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Figure & shows the response when G, = Gy = 0.1 and the

sampling interval is 0.1ls. Note the limit cycles. In this

case changing G, and G, to 1.0 was not suff‘icienf to stabilise
the response but was only achieved by setting G, = 2.0 and

Gy - 1.0, see figure 9. Again, increasing the sampling interval,

this time to 0.5s, gives an unsatisfactory response, figure 10,

5.4 Fourth experiment : comparison with 'M & B' controller

In order to compare the best responses of the fuzzy
conltroller with a controller designed in a more conventional
way, it is necessary to linearise the equations given in section
2. This hans been done by Macfartane and Belletrutti who also
designed a controller, Simulation of the process with their
controller replacing the fuzzy controller gave the results
shown in figures 11, 12 and 13, corresponding to set point changes
in pressure and level, pressure only and level only. These
are much better, as expected, although the overall shape of the
controllier response in each case is not dissimilar to that of

the fuzzy controller.

5.5 Fifth experiment : stochastic control

Using the linearised headbox equations of the previous
experiment, it is possible to design n:n opt imal stochastic
regulator for the headbox. Figures 114, 15, 16 and 17 show the
behaviour of the controlled process when measurement noise is
introduced to the system. This experiment consisted simply of
keeping the set points at their set state values and altering
the variance of the measurement noise. The mean sqﬁare output

values and the mean square control values were caleulated for
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each combination of noise variance and controller and are
plotted in the figures.

Figure 14 shows the mean square total pressure, ;} .
Notice how close are the curves of the optimal stochastic and
M & B controller., DBut notice also the shape of the fuzzy
controller curve. For a range of noise variances between 0.0l
and 0.1 this is almost flat, indicating thal the controller is
insensitive to noise amplitude over this range. Figure 15
shows the same curves for mean square liguid level, ;: . In
this case all three controllers give a similar performance.

Figure 160 and 17 show the mean square controls, u®* , and

ul , and give a rather different picture. Whilst the optimal
gtochastic controller still has the best performance, the
fuzzy controller does better than that of Macfarlane and

Belletrutti. This is simply because the fuzzy controller has

a limited range of control outputs and has discretftised inputs,

6. Conclusions and further work

These results highlight the two main problems in fuzzy
controller design. Firstly, the derivation of the rules in
the control algorithm and secondly, the implementation of
these rules in o non-fuzzy environment such s o digital compufer,
Whilst in no way giving an answer to these problems, the results
do show the importance of a careful choice of jmplementation
parameters.

The results are encouraging, however, and work in the
future will consider the effect of other implementation parameters.
such as the number of discretisation levels in the support sets

and the choice of single-valued control from the ontput control



S 11/2%]

On a more general front, there is clearly a need for
a coherent theory of control for fuzzy systems. Without it,
each application can only be treated on an ad hoc basis and
the ultimate usefulness of the fuzzy sel approach will remain

in doubt.

7. References

1. King P,J., Mamdani K 1,
""Ihe application of fuzzy control systems to industrial
processoes ot
Proc. Workshop on discrete systems and fuezy reasoning,
Queen March College, London, Jan 1975,

2. Rutherford D.A,
'The implementation and evalualion of a tuzzy control
algorithm for a sinter plant.’
Op cit.

3. LZadeh LA,
'Outtine ol a new approach to the analysis of complex
sys tems and decision processaes.!
LERE Trans., vol SMC=3, pp 28-4h4, 19773,

L. Mactarlane A.G.J., Belletrutti J.J.
'The characteristic locus design method.’®
Automatica, vol 9, no 5, pp 578-588, 1973.

5. Bryson A.E., llo Y-C,.
Applied Optimal Control.
Blaisdell Publishing Co., 1969,

6. Tong R.M.
'An assessment of problems associated with the design
of fuizy controllers.!

BSC Internal report (to be issued).



AND LIQUID LEVEL

-
&
-

TA_ PRESSUR

-y
S

AIR ANC LIQUID FLOW

2.

8.9 ¢

1.y 1 ; ! i i !

3.9 5.0 184.9 HeY /8.9 Zh -4 30.0
SIMULATION {ENGTHISECS)
30.¢ rwm, . | | [ | -
8.4 .!
-
16.0 | ‘/
9. S S AN N
-18.9
"28-8 "
-38.9 L R S SOV NI S| J
2.8 5.8 19 .0 15.8 20.8 25.9 30 .9

SIMULATION LENGTH(SECS)

F\@g\)ﬁ? &4

SHq9/182



TOTAL PRESSURE AND LIQUID LEVEL

AIR AND LIQUID FLOW

2.0

1.8

0.9

"l-@

38.8

20.0

12.0

2.8

“18-8

-20.0

-30.0

B T T T T T
U,
a
u%‘
—_ L ! I L 1
8.0 5.0 18.0 15.8 20.9 25.0 308.0
SIMULATION LENGTH(SECS)
T I T T [
= . -
~——~jv"NMNu,
! 1 I ! !
0.0 5.0 186.0 15.8 20.8 25.0 30.9

SIMULATION LENGTH{SECS)
Figuee 3,

.5J?/2?3



TOTAL PRESSURE AND LIQUID LEVEL

RIR AND LIQUID FLOW

Ny
.
o

- | | i’ Tty i ”’"""_] )
w -
=18 i i ]
0.9 5.8 10.8 15.0 20.9 25.9 30.0
SIMULRTION LENGTH{SECS)
30.9 - | I | I |
20.9 -
IBUB - u,; —
8.0 | .
L_.W*Ju, —
-18.8 | “
-20.8 _
-30.8 | _ 1 i 1 1 1 .
8.0 5.9 18.08 15.8 20.8 25.0 30.9

SIMULATION LENGTH(SECS)

Figure L,

s/ 254



PRESSURE AND LIGUID LEVEL

TATAL

AIR AND LIQUID FLOW

e e

e R

1.8 L | . } 1 ! v
: 1.9 15.4 Z0.6

SIMULHTION LENGIH(SECS)

3.8 .
20.0
18.0 |

8.8 |

1 o
26.4 30.9
- -

-18.9 |

"'28 08 o

~-30.9 | i 1 1
.2 5.8 10.9 15.8 20.0

SIMULATION LENGTH(SECS)
FigURE &,

5 S
2.6 30.9

$-19 /128



TOTAL PRESSURE AND LIQUID LEVEL

AIR AND LIQUID FLOW

2.9

8.8

~1.8

30.9

20.9

18.0

8.0

““18.8

-20.9 |

"'38 -8

[T 17 T i [ I
- gl o
//./’/////\Q%;
L
L. e i i L b ) .
2.8 5.8 18.6 15.8 20.8 25.80 30.0
SIMULATION LENGTH(SECS)

- | ! [ I i

[

I

| i 1 3 i

8.9 5.8 19.0 15.0 20.0 25.0 308.9

SIMULATION LENGTH(SECS)
FiguRe &,

5,19 [2e¢



e .

TOTAL PRESSURE AND LIQUID LEVEL

AIR AND LIQUID FLOW

2.8 .
1 i T 1 1
1.8 | .
3
@.8 \// /
Yo
~] .8 ! i i i i
8.8 5.8 19.0 15.0 28.4 25.0 3a.0
SIMULATION LENGTH{SECS)
3.8
] ] T 1 1

20.8 | ]

18.8 | N
Wy

n.g ™

"'la-@ - -
'—L.........u_l
“28«-@ - .
~38-@ 1 i I ] I
2.8 5.8 18.8 15.08 20.8 25.8 30.9
X SIMULRTION LENGTH(SECS)

Figuee 7.

S.01/L8y



TOTAL PRESSURE AND LIQUID LEVEL

RIR AND LIGUID FLOW

2.0

1.0

8.8

- l -@

30.0

20.8

10.9

8.0

~16.0

"'28 -8

"3@ -8

\/

R I SO » i AU R R
2.6 5.0 10.8 15.8 28.8 25.2  38.9
SIMULATION LENGTH(SECS) |
] T 1 1 T
L ) |
e
{ | | | I
8.8 5.8 18.8 15.8 20.8 25.0 30.8

SIMULATION LENGTH(SECS)
Figure B,

519/25%



TOTAL PRESSURE AND LIQUID LEVEL

RIR AND LIQUID FLOW

2.8 I T T T T
1.8 L
Ya.
8.0 N Al
\W—\Tﬁ-—f
~-1.0 i |

i | {
8.0 5.0 10.9 15.6 20.2 25.8

SIMULATION LENGTH(SECS)
FlQURE 9.

30.9
SIMULATION LENGTH(SECS)
38.0 T T T T T
28.0 ]
) W_u,. 7]
18.2 | 1
9.0 .
= r
Wy
”15-8 L- e
-20.0 | [J =
-38.8 i L I } ]
9.0 5.2 10.8 15.8 78.0 25.8 30.8

S.19/289



TOTAL PRESSURE RND LIQUID LEVEL

RIR AND LIQUID FLOW

5. 14/190
2.8

1.0 | -
' Yo

0.0

Y%

"‘1-8

b

1 4 1

1
6.0 5.8 18.0 15.6 20.0 25.8 30.0
STMULATION LENGTH(SECS)

36.0

20.9 _k,_[ .

Wy,

ol LI TT 11 T

-18.8 | -

"28-8 - — ‘

-33;8 ! [ 1 |
2.8 5.8 18.0 15.8 20.0 25.8 30.0

SIMULATION LENGTH(SECS)
FiGuRE 10.




TOTAL PRESSURE AND LIQUID LEVEL

AIR AND LIQUID FLOW

2.0

2.0

"'l lB

30.08
206.9
10.8
0.8
-10.0
-20.8

"33 -a

SIMULATION LENGTH(SECS)
Figwre 1.

| I T I
Y,
Y
i i L i ]
2. 2.0 4.8 6.0 8.8  10.0
SIMULATION LENGTH(SECS)
I 1 1 T
W,
- -
s
s
i 1. 1 L
0.8 2.0 4.8 6.8 8.8 18.0

5.1/ 29]



TOTAL PRESSURE AND LIQUID LEVEL

AIR AND LIQUID FLOW

2.9

1.8

0.0

-1.0

30.8

20.9

18.8

é.0

-1008

""28 -@

~30.9

' T I T T
Y
Yz
b e . L L i 1
8.8 2.8 4.0 5.8 8.8 - 10.0
SIMULATION LENGTH(SECS)
{ I i |
Wt
Wa
| | i i
8.0 2.8 4.0 6.0 8.8 16.8

SIMULATION LENGTH(SECS]
Figuee 1.

£l [292



TOTAL PRESSURE AND LIQUID LEVEL

RIR AND LIQUID FLOW

2.0

2.0

36-0

20.0

18.0

8.8

"1@-@

"‘2@ -9

~3G'— ﬂ

[ T T T |
i i i 1
0.8 2.8 4.0 6.0 8.9 12.8
SIMULRTION LENGTH{SECS)
T T T T
Yy
P
Wy
I ] 1 i
0.0 2.0 4.0 6.9 8.0 10.0

SIMULATION LENGTH(SECS)

Figuee 13,

$.11/243



[ g

e

e

s.19/294

‘5&
1
"
o
x
» x (
- * b » o *
®
e x -+
L
-
o
e
. -
- ® *
¥ [
*
®
+
-
+
. « ru;sa cwekvellav
© *HeB ssnbveller
+
b + Sredhestic cowive\lesr
e
-\ 1 i1 4 1 i . i ] - |
. - oy ol -t - - “\ *h R .3 o | 3

GRaty Swowing Mo Saome Ovtwr Be A
Forvation O CMEDMTON Mook VARIAWCE

Figuee 4,



L&

B )

Ly i?/z?S’

o
Ya
®
[ ]
-
- n
L
[
f 3
- = [ ]
»
. ®

L. * 3

" Favty centmilav
. . J

e MaD contreVav

+ $recheaio @«Mw
:
 J 1 1 i 1 | 1 i X R'_;
-~
) ol [ 1} . on t [ | ¢ e e

Gaarn Suowwn, aen Sauveeg Ouvteor fa &
FfoneTion O OBIARVTOw Nows “Vesuhetlu

F\QU RE S,



- %]

3
u,
N ° ° o © ) [ ] [s Q [o]
= »
>
» x® » *
f
4
f
»
» 4 +
. +
.
oee.
n ” Fm~5 canivoliey
© MaB corkromy
Stachagkic contvoller
i | A  § i i R |
. oo} o8 & o1 o8 ' 3 -8 ve t 9

GReov Sviowinily  Matp Sapnis Covtool. B8 A
Fonenon OF OMSERNVATON Nogt VARVWCE

FIGURE 16,



1900 0

00.0

1.8

+001

gy
Uy ° ) ©
- ® ®
L}
®
©
¢
©
Q .
» 4 »
»”®
»
- L 3
o
- % Fovay controlier
© WA} cenkroller
Stochaslie Controtier
x
Y
&
= & ¥ 3
+ +
¥ L
h 4
A i i [ ] i 1 i 1 H Q . |
oo -SPe, L ] N L3 o% ! : 8 -1 -0 20

Graty Swowwy tAave SaumMe Cowwnn. 6 A
Fusicton OF OMERVATON NOgE VARWICE
FlgURE 17T,

5:/?/297





