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Automata are the prime example of general systems over discrete spaces, and yet the theory of automata is frag-
mentary and it is not clear what makes a general structure an automaton. This paper investigates the logical
foundations of automata relating it to the semantics of our notions of uncertainty, state and state-determined. A
single framework is established for the conventional spectrum of automata: dererministic, probabilistic, fuzzy, and
non-deterministic, which shows this set to be, in some sense, complete. Counter-examples are then developed to show
that this spectrum alone is inadequate to describe the behaviour of certain forms of uncertain system. Finally a general
formulation is developed based on the fundamental semantics of our notion of a state that shows that the logical
structure of an automaton must be at least a positive ordered semiring. The role of probability logic, its relation-
ship to fuzzy logic, the roles of ropological models of automata, and the symmetry between inputs and outputs in
hyperstate/hyperinput-determined systems are also discussed.

INDEX TERMS Automata, state, logic, probability, fuzzy, deterministic, non-deterministic, modal, multi-
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1 INTRODUCTION

There is a danger in all general systems theories
that the generality may be carried too far. That is
the possibilities encompassed by the formalism
may go beyond those required by the semantics of
any application or, worse, the ‘“‘general” case may
include instances that have apparent applications
but which actually coaflict with the assumed
semantics. In this paper we are concerned with the

semantics of discrete, state-determined systems, or

automata, and with the most general formalism
that encompasses all cases of interest and yet
adheres strictly to the semantics of our notions of
“state” and *“‘automaton”. '
Automata theory as a subject area grew natur-
ally out of the work of Turing® in the thirties on the
mathematics of computation in which the notion
of an abstract, state-determined machine played a
major role. This concept was immediately attrac-
tive not only in its obvious role as a foundation for
the design of relay switching circuits and the nascent
digital computer, but also as a model of biological
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phenomena in neural networks (e.g. the work of
McCulloch and Pitts?). The wide ranging interests
of von Neumann?® encompassing, and making major
contributions, to both computers and biology
firmly established this dual role of automata theory
in the early forties quite independently of any
speculations about the relationship between the
computer and the brain.

Thus automata theory developed as a general
systems tool from the beginning. However, it is
interesting to note that in the late forties Wiener*
in proposing the integrative viewpoint of cyber-
netics, and Bertalanfly’ in proposing the even
wider ranging viewpoint of general systems theory,
exemplify their approaches with the differential
equations of continuous systems rather than the
discrete space formulations of automata theory. It
was left to the brilliant expositions of Ross
Ashby®7 in the early fifties to demonstrate the
major role of automata theory, complementary to
that of continuous systems theory, in such general
approaches to natural and artificial systems.

The joint origins of automata theory in biology
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and computer engineering have been succinctly
reviewed recently by Burks.® In a related survey
Arbib® criticizes the applicability of current
automata theory and suggests that many new
developments and extensions are required. This
criticism will be echoed by those who have recog-
nized the concepts of automata theory as relevant
to their own disciplines but have been disappointed
in the dearth of applicable results,

The convictions, on the one hand, that the basic
concepts of automata theory are relevant but, on
the other, that the present developments are not
sufficiently fruitful have prompted several workers'
to investigate new automaton structures, e.g.
Arbib’s restriction of state transitions to represent
generalized continuity in tolerance automata'®
and Zadeh's generalization of state transitions to
represent non-probabilistic imprecision in fuzzy
automata.'' Through the very diversity of interests
involved automata theory has grown up piecemeal
with a variety of automaton structures and semantic
interpretations. The continuing intermittent addi-
tion of new structures reinforces the impression that
not just the development of the subject but perhaps
also its foundations are, in some sense, incomplete.

This paper was motivated by our own experi-
ence in applying algebraic system theory to prob-
lems of system identification, stability and control,
where we have found it necessary to define auto-
maton structures that do not fit the conventional
spectrum of deterministic, stochastic, fuzzy and
non-deterministic automata. These new structures
initially appeared to be representable as automata
over modal logics rather than Boolean algebra.
However, the need soon became apparent for
mixed logics involving continuous probability
intervals as well as discrete modalities, and the
variety of possibilities led us to look for some more
general approach.

It has been shown by Santos and Wee'? that the
main spectrum of deterministic, stochastic, fuzzy
and non-deterministic automata can be fitted into a
single formalism, but this is descriptive rather than
axiomatic, It leaves open many questions: whether
further automaton structures can be invented ad
infinitum; what is the most general formulation;
and so on. The search for generality is itself
dubious unless backed by definite practical require-
ments expressed as semantic constraints. In this
paper we take three distinct approaches to the
"problem of establishing the most general structure
possible for an automaton: analysing first a sense
in which the conventional spectrum of automata is

already complete; secondly arguing from practical
application requirements that this spectrum is
inadequate; and thirdly, reversing the direction of
increasing generality, to show by foundational
arguments that certain quite powerful structural
constraints are necessary to an acceptable concept
of an automaton, i.e. that arbitrary algebraic
structures formally similar to automata do not
necessarily possess viable semantics.

2, CONVENTIONAL AUTOMATON
STRUCTURES

2.1. The Generalization to Hyperstates and
Hyperinputs

The key concepts in automata theory are clearly
those of a stare and the behaviour of a system being
state-determined. Both the role of these concepts
in modern-system theory and their formal status
have been lucidly analysed by Zadeh'*''*. Given
that an automaton is a discrete-time, discrete-state-
space, state-determined machine, at first sight there
appears little scope for generalization. The entire
structure is well-defined and may be presented as a
function mapping the current state and input into
the next state (discussion of the role of the state-
dependent or state/input-dependent output will be
deferred to section 4).

However, neither the actual current state of an
automaton nor its current input are necessarily
well-defined. For example, we may know only the
probability distribution of possible current states,
or of possible current inputs. In either case the next
state of the automaton will not necessarily be a
single state but will probably also be known only as
a distribution. It is a convenient generalization of
the concept of an automaton to consider transi-
tions not just between states but between such state
distributions, regarding distributions over states
and inputs as generalized “states’” and “inputs”,
respectively (the terminology of hyperstates and
hyperinputs is convenient in making this generaliza-
tion).

It is this extension of the concept of state/input-
determined to what might be called hyperstate/
hyperinput-determined systems that we shall
analyse. Note that the basic concept of a state still
requires that the automaton be regarded as being
in only one state at a time, although the actual
current state may be uncertain. Those hyperstates
that correspond to no uncertainty, to the auto-
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maton actually being in a single state, will be called
sharp.

The conventional generalizations of deterministic
automaton to probabilistic, fuzzy, and non-deter-
ministic automata are examples of allowing certain
forms of hyperstate. In the following sub-sections
we shall first consider a common notation for each
of these forms and then analyse in detail the rela-
tionships between them.

2.2 V-sets and Normalization

The conventional forms of hyperstate can all be
represented as mappings from the set of states, S,
to a truth-set, ¥,6: S — V. We shall adopt in the
paper a notation for mappings of states that avoids
parentheses and subscripts since both often
obscure the essential simplicity of automaton
operations. & will be treated as a unary operator
binding on the right so that we may write ds for
the image in ¥ of s € S. Goguen'® calls a mapping
such as § a V-ser with S as carrier.

For the purposes of describing automata states
we also require a normalization condition
expressing that the automaton is actually
in one and only one state. We shall later take
¥ to be a semiring with binary operations,
@ (we do not use ‘“‘+ " because it can be confused
with arithmetic +) which is associative and com-
mutative, and © which is associative, often com-
mutative, and distributes over @. Both @ and ©
will be regarded as infix operators mapping
VxV = V such that § takes precedence over @
which itself takes precedence over &, It is con-
venient to express the normalization condition in
terms of the formal expression, @, ,s6s, meaning
the result of operating over the entire co-domain of
4 in the truth-set with @ (i.e. “summation” if @ is
actually + —we assume such an operation is well-
defined if S should be infinite). By suitable choice
of ¥ and @ we will show that the normalization for
all four cases to be considered may be taken to be:

@n.la': =1 (1)

where 1 isa “zero’ in ¥ foro.

As a further aid to brevity in notation we shall
adopt a convention, similar to that of the tensor
calculus, that summation over repeated dummy
variables is implicit. In most cases of interest such
a repetition naturally arises—we can introduce it
artificially into eq. 1 by taking 1 to be a mapping
fromStolin V,i.e. Ais = 1l forallse S. Theneq. |
may be written:

Asads = 1 )

with implicit “summation™,

2.3 Deterministic Siates

These express the conditions that arise when a
system’s behaviour is completely defined and
determinate. The automaton representing it is
always in a well-defined, “‘sharp”, state. We can
express this: for each state, it is true or false that the
automaton is in the state and the automaton is in
precisely one state. A suitable truth set is binary,
V = {0, 1}, with ® being arithmetic +, and the
normalization as in Eq. (1). This necessitates only
one state being mapped onto 1, and hence we could
express the normalization as, *‘the inverse image of
| under & contains just one element.”

One note in passing that we shall discuss further
in section 2.9 is that it is essential to take @ for a
deterministic automaton to be arithmetic + and
not logical OR (perhaps a more obvious choice).
There is no equivalent to the normalization of
Eq. (1) if @ is taken as OR and hence no convenient
way of expressing that only one state is possible.

24 Probab:‘h'mé States

These express the conditions that arise when a
system’s behaviour is a Markov process whose
behaviour is constrained by well-defined probabili-
ties. The probabiliry of the automaton representing
it being in a particular state is then always well-
defined. That is, for each state, the probability that’
the automaton is in the state is defined and the
automaton is in precisely one state (the probabili-
ties over all states sum to one and the conditional
probabilities of the automaton being in one state
given that it is in another are all zero). A suitable
truth set is a closed interval of reals, ¥ = [0, 1]
say, with-® being arithmetic +, and the normaliza-
tion as in Eq. (1).

2.5 Fuzzy States

Zadeh's concepts of fuzzy logic'® and fuzzy
automata'! represent an attempt to provide a
formal basis for a calculus of approximate reason-
ing.!7:'%!% Formally fuzzy logics in their basic
forms are closely related to the various classical
multi-valued logics®® of Lukasiewicz, Dienes,
Gdodel, etc. However Zadeh has contributed new
and practically interpretable semantics that makes
the application of these logics attractive in systems
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engineering, for example, in pattern recognition,?!
taxonomic clustering,?? process control,?? robot
planning,?* and many other applications.?*

Thus one view of the concept of a “fuzzy” state
is that it expresses the form of hyperstate that may
arise when a system'’s behaviour is being described
by a process of approximate reasoning. Other
interpretations are possible and we shall adopt a
formal viewpoint in this paper, being concerned
only with the consistency of the notion of a fuzzy
state with that of a state itself. Formally, for a
fuzzy state the degree of membership of each
particular state of the automaton to being the
actual state is defined. If we take the usual fuzzy
logic system with the truth set being the closed
interval of reals and @ being a MAX operator,
then V¥ = [0, 1]and a®b = MAX(a, b).

2.5.1 Normalization of fuzzy states. The normal-
ization of fuzzy state sets to express the condition
that the automaton is actually in precisely one state
requires special attention. The published semantics
of fuzzy automata are unclear on this point. Wee
and Fu?® suggest that if a state has a degree of
membership of unity then the automaton is
definitely in the associated state, However, the
converse is not true and it is possible for the rules
of fuzzy logic to generate a situation in which the
degrees of membership of all states are zero except
one which is not unity. This is so even if the total
degree of membership is “normalized” as suggested
in Ref, 26 in the same way as a stochastic auto-
maton (arithmetic sum of degrees of membership

eing unity). It also leaves open the meaning of two
distinct states each having a degree of membership
function of unity—an important case since it
corresponds to the classical non-deterministic
automaton.

It seems better to place the emphasis on the
degree of membership of a state being zero as
implying that the automaton is not in the associ-
ated state. With the usual fuzzy logic definitions of
¥V and @ given in section 2.5, our normalization
condition of Eq. (1) requires only that at least one
state has a degree of membership of unity. This
condition is consistent with the definition of @ in
fuzzy logic, whereas the proposed “normaliza-
tion”” of Ref. 26 introduces arithmetic +, an
operator outside fuzzy logic. Neither normaliza-
tion is consistent with a degree of membership of
unity implying that the automaton is definitely in
the associated state, and this requires an alternative
definition,

A similar problem arises with non-deterministic
automata and is clearly a semantic one to be
resolved in actual applications. The formal normal-
ization condition proposed here retains consistency
between fuzzy automata and the others. We would
propose the interpretation that a fuzzy automaton
is definitely in a state if the truth values of all the
other states are zero. The normalization of Eq. (1)
then implies that the truth value of the remaining
state is unity—the converse is not true.

2.6 Non-deterministic States

These might more positively be called *possibil-
istic” since they express the conditions that arise
when a system’s behaviour is such that only the
possibility and impossibility of its being in a given
state can be discriminated. That is, for each state
either it is possible, or impossible, that the auto-
maton is in that state and the automaton is in
precisely one state (at least one state is possible,
and if only one state is possible than the auto-
maton is in that state). A suitable truth set is
binary, ¥ = {0, 1}, with @ being Boolean OR
which also corresponds to the MAX operation
over this truth set. The normalization of Eq. (1)
implies that the inverse image of | under é contains
at least one element (as it also does for fuzzy states).

2.7 From States to Transitions

Having given appropriate forms for the hyperstates
of deterministic, probabilistic, fuzzy, and non-
deterministic automata, we shall next examine the
forms of the state transitions in these cases, defining
appropriate next-state-functions, NSF’s. For the

. moment we shall consider only the NSF corres-

ponding to a particular input, or hyperinput, to the
automaton. A full definition will involve a family
of such NSF's. In this section also we shall take it
for granted that the nature of transitions can be
expressed in terms of the same truth set as that for
the states themselves. For example, a *‘stochastic
automaton” is ome with stochastic states and
stochastic state transitions. We can express the
NSF as a function, ¢: §x.S — ¥V, mapping a pair
of states into the truth set—which represents the
truth value of the transition from one state to the
other. Again, for notational convenience, o will be
regarded -as an infix operator taking precedence
over @, o and §, such that, pos, is the value in V of
the transition from state p to state s—note that the
operation ¢ is not commutative in general.
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The normalization of ¢ for the cases considered
may be expressed as:

posods = 1 3

for all pe S (with implicit summation over all
s€ S). And, if &' is the new V-set function deter-
mining the hyperstate after a transition, we have:

&'s = dpcpos (4)

As a matter of notation we can write this as an
equation for §":

&' = épopa (5)

leaving both &' and ¢ requiring their right-hand
operands.

Note that, by the commutativity of & and the
distributivity of o, it may be shown that Eq. (3)
implies that the operation of Eq. (4) preserves the
normalization of Eq. (2). If Ascds = 1, then:

Asod’s = Spopasdis

= §po(posois)
= dpaip
= dsods = 1.

Equations (2), (3) and (4) are a common formal
expression for the normalization of hyperstates,
the normalization of the NSF, and the transition of
hyperstates in all four generalizations of automata
so far discussed. The truth-set ¥, and the operator,
@, have already been defined for each case. It
remains only to define the operator, @, as: arithme-
tic x (multiplication) when ® is arithmetic +
(deterministic and stochastic automata); and
arithmetic MIN (least of two operands) when @ is
MAX (fuzzy and non-deterministic automata). Note
that MIN and MAX may be regarded as Boolean
AND and OR in the non-deterministic case, and as
generalized multivalued logic AND and OR in the
fuzzy case.

Before proceeding it would probably be useful
to illustrate the relation between the notation
adopted here and the conventional vector/matrix
notation for automata, Suppose that S contains n
states labelled s5,...s,, and that @ and © are
written as addition and mulitiplication, respectively.
Let:

ds; = p;, 0's; = pi (6)
and: '

S8 = Pij (7

Then Eq. (2) becomes:

L=y pi=l (®)
i=] i=1
Eq. (3) becomes:
YL oy=1 ©)
and Eq. (4) becomes:
‘- S pup; 10
Pi ;lPuP, (10)

2.8 Comparisons and Contrasts

The previous sections have been phrased to bring
out the similarities and differences between the four
structures considered. Note that the normaliza-
tion condition is uniformly that of Eq. 2, and the
truth sets are either the entire interval, [0, 1], or its
boundary points, {0, 1}, whilst the transitions are
uniformly represented by Eqgs. (3) and (4). A table
of operators against truth sets (Table I) shows that
the four cases analysed encompass a complete set of
variations for these truth sets and operators. This is
intuitively satisfying because it gives a closure over
those automata which have been most extensively
studied in the past. It is an answer in this context to
the question of whether we can continually invent
new forms of automaton,

TABLE 1
Truth sets and operators for automata

Truth Set
{0, 1} [0, 1]

+ Deterministic Probabilistic

©

OR Nondeterministic Fuzzy AND

2.8.1 Fuzzy andstochastic automata. Therelation-
ship expressed in Table I between fuzzy, non-
deterministic and deterministic automata, and
between stochastic and deterministic automata, are
well known. However, that between stochastic and
fuzzy automata is less obvious and it is worth
discussing whether this is just a mathematical
formality or whether it has a semantic content.
Clearly the common use of the interval [0, 1]
corresponds to quite different interpretations of the
values within it—a “degree of membership”
appears as a less precise concept than a “‘proba-
bility”. Equally the operators, + and x, appear
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little related to MAX and MIN. However, the
following argument demonstrates a closer cor-
respondence than might be expected.

Consider two events, 4 and B, with respective
probabilities of occurrence, p, and pg. If the two
events are statistically independent then the
probabilities of their conjunction and disjunction
are;

P(A A B)=p,xps (11)
P(AV B)=p,+py=pPaXpa (12)

Suppose, however, that 4 and B are not indepen-
dent events but that one implies the other, 4 — B,
say. Then we have:

KA A B)=p, (13)
pA v B)=py (14)
However, the direction of implication also gives us:
p4) s p(B) (15)

so that Egs. (13) and (14) may be re-written.
p(A A B) = MIN(p,, ps) (16)
(A v B) = MAX(p,, Ps) (17)

Conversely, if the *“fuzzy logic’ conditions of
Egs. (16) and (17) hold for two probabilistic events,
then we have:

p(4 A B) = MIN(p(4 A B)
+p(A A B),p(A A B)+p(A A B))
' (18)

which implies that either p(4 A B) = 0 or p(4 A
B) = 0,i.c.eitherd — Bor B — A.

Thus we see that the applicability of the fuzzy
logic operations of Eqs. (16) and (17) to determin-
ing the probabilities of conjunction and disjunction
of two probabilistic variables is equivalent to their
being a logical relationship of implication between
the variables. In principle therefore the fuzzy logic
connectives may be regarded as those of probabil-
istic logic in which all variables are connected by a
chain of implication. This is the converse condition
to that generally assumed in application of prob-
ability theory where one attempts to make variables
statistically independent. The *“‘chain” concept is
intuitively significant—the MIN operation in fuzzy
logic expressing that a chain is as weak as its
weakest link—the MAX operation expressing that
alternative chains in parallel are as strong as the
strongest. '

These relationships between probabilistic and
fuzzy logics indicate that Table I expresses more
than mathematical formalism. Clearly the relation-
ship demonstrated between fuzzy and probabilistic
logics should also extend to the richer semantics
developed by Zadeh.!’”-'®:'? It would also be
interesting for application studies to compare
probabilistic and fuzzy logics in their relative
efficacies for particular situations and relate this to
the presence or absence of implications between the
variables involved. Gaines?” has done this for the
control studies of Mamdani and Assilian,??
showing that in this particular case both logics lead
to the same control policy. This is clearly not neces-
sarily true in general but might be almost universal
in practical situations where the algorithms have to
be robust against errors and imprecision in the data,
and hence also to reasonable perturbations in the
operators on which they are based.

2.9 The Logics of Conventional Automata

For fuzzy and non-deterministic automata the
operators = and = are logical OR and AND, in
two-valued or multi-valued logics respectively. It
might be expected that the same would be true for
deterministic automata since the truth set is two-
valued. However, it has already been noted in
section 2.3 that € must be arithmetic + in this case
if the normalization of deterministic hyperstates is
to be expressed in terms of it. Hence, in terms of
operators, deterministic automata are more closely
related to probabilistic automata than to either non-
deterministic or fuzzy automata.

However, there is also a sense in which @ and o
for deterministic and probabilistic automata may
be regarded as logical operators. Rescher (Ref. 20,
section 27) has given a set of postulates for what he
calls a probability logic (PL) over a domain of
statements. The logic is defined in terms of a
valuation over the lattice of conjunction and dis-
junction of statements that assigns some real value,
P(A), to every member, A4, of the universe of
statements. This assignment has to satisfy the
postulates:—

(P1)0 £ P(A), for any statment, A.
(P)PAv A) =1

(P3) P(A v B) = P(A)+ P(B), provided 4 and B
are mutually exclusive

(P4) P(4) = P(B),if A islogically equivalent to B
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(P5)P(A A B) = P(A)+P(B)—P(A v B), dc.ﬁn-
ing conjunction '

(P6) P(A o B) = P(A A B), defining implication

(PT)P(A = B) = P(A o> B A B> A), defining
equivalence

These are the normal basic requirements for a
system of probability, but they may also be regarded
as a set of postulates for an infinite-valued logic.
The logic is not truth-functional, but if the value 1
only is designated then the truth tables for the
operations of negation, conjunction and disjunc-
tion are those of the classical propositional calcu-
lus (PC). Conversely, the axioms that define PC
may be shown to be tautologies of probability logic
(Ref. 20, p. 187). Hence the system coincides
completely with PC in its tautologies.

In terms of our previous discussion of automata
the operator @ is used to combine the truth-values
of the automaton being in different states, or to
combine the truth values of trajectories to the same
state, both of which represent the disjunction of
mutually exclusive events. Hence P3 of PL applies
and @ is arithmetic plus. The operator © represents
a normalization-preserving transformation of
hyperstates and must be arithmetic x if © is
arithmetic +. However, it is consistent with PS5 for
the logical conjunction of certain statements to
have a valuation which is the product of the valu-
ations of each statement. This condition represents
statistical independence between the statements.

Thus, for all four cases the operators @ and © may
be regarded as logical operators of disjunction and
conjunction respectively. For non-deterministic
automata the two-valued propositional calculus is
appropriate. For fuzzy automata a multi-valued
generalization of PC is appropriate, e.g. virtually
any of those described in Ref. 20 since the MAX
and MIN operators are the most common for
disjunction and conjunction. For deterministic and
probabilistic automata a probability logic is
appropriate in which o plays the role of conjunc-
tion for statistically independent statements,

We can make the common basis for automata -

even stronger now by re-interpreting the arguments
of section 2.8.1 in terms of the postulates of PL.
Essentially what we have shown in section 2.8.1 is
that the operations on truth-values for disjunction
and conjunction in a PL become MAX and MIN
respectively if a relation of mutual implication
between statements is assumed (rather than stat-
istical independence). Hence PL is a general
B

foundation for all four types of automata, with
auxiliary postulates leading to the particular cases.
This foundational role for PL will be further
demonstrated in the following section.

3. POSSIBLE AUTOMATA

3.1 The Need for Further Automaton Structures

Although section 2 gives a satisfying completeness
result for the conventional spectrum of automata,
it in no way implies the sufficiency of these struc-
tures to represent all possible cases of interest. That
they are in fact inadequate is best seen by example,
and we shall give one which is itself of particular
interest in the context of calculi of possibility and
probability, and of multi-valued logics.

In our studies of system stability and control we
have been very concerned to embody in our formu-
lation the distinction between possible events that
may not occur and possible events that are guar-
anteed to occur sooner or later. The former events
correspond to problems that may arise and have to
be avoided. They relate to regions of states which
are reachable in terms of stability analysis but not
reachable in terms of control. The second type of
possible event, however, is responsive to feedback
control since if the situation is continually re-
created in which it may occur then it eventually will
occur,

Note that probability theory does not provide an
explicatum of the first type of possible event, If for
the purposes of analysing an uncertain system we
assign an uncertain event a non-zero probability
then we imply that not only may it occur but also,
in a sequence of occurrences each of which may be
that event, it eventually will occur with a probability
arbitrarily near one. The notional assignment of a
definite probability to an event also fails to provide
an adequate explicatum of the second type of
possible event because it has the stronger implica-
tion that the relative frequency of such events in a
sequence will tend to converge to the given prob-
ability with increasing length of sequence.

Either or both of these connotations which
probability has over possibility may be too strong
in practical situations where the concepts of
probability theory are being used to express the
effects of uncertain behaviour. For example, we
are often faced with situations where an event, E
may occur, ‘but there is no guarantee that E
actually will occur, no matter how long we wait. If
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we ascribe some arbitrary probability to E then we
certainly express that it is a possible event. How-
ever we are in a position to derive totally unjustified
results based on the certainty of some eventual
occurrence of E, or meaningless numeric results
based on the actual “probability’ of occurrence of
E.

The danger of deriving profound results that
have no justification other than an unwarranted
strength in the theory is a real one. For example,
Gaines?® ?? has shown that a two-state stochastic
automaton can solve a class of control problems
otherwise requiring a recursive automaton®° and
not soluble by any finite automaton?®:3°, This
significant result is dependent on a source of
uncertain behaviour that is properly probabilistic,
but whose probability does not have to be known,
It cannot be derived if the behaviour is merely
possibilistic. There is no way, however, of pre-
venting the consequences of this result appearing
in the analysis of a system in which uncertainties
have been represented by probabilities rather than
possibilities.

A similar problem arises in the practical applica-
tion of linear systems theory. There are many
results which may be derived from the assumption
of linearity (such as the complete extension of
knowledge of local behaviour to that of global
behaviour) which are false in most practical systems.
The engineer resolves these problems in practice
through a set of “rules-of-thumb” based on

commonsense and experience which constrain the

deductions he is prepared to assume valid. Such a
resolution is however extremely difficult to imple-
ment in an automated, or computer-aided, design
system, and becomes increasingly difficult to apply
as the system involved becomes more complex.

In the following section we analyse these differ-
ent forms of uncertainty about system behaviour
and then demonstrate that whilst any one of them
may be encompassed by the automaton structures
analysed in section 2 a combination of different
forms of uncertainty requires a more general
structure than is available in this spectrum of
automata,

3.2 Possible, Eventual and Probable Events

(i) Possible Event E is possible—no reliance may be
placed upon the occurrence or the non-occurrence
of E. This corresponds to an interpretation of E as
an event whose negative consequences must be
taken into account, but whose positive conse-

quences cannot be relied upon. The modal operator
of “possibility”, M, in alethic modal logic®!: 32
represents this concept, but conventional prob-
ability theory provides no explicatum for it.

(ii) Eventual Event E will eventually occur in that
it is frequent in the sense of infinite sequences, i.e.
in a series of events E(i), for any n, there exists
m > n, such that E(m) = E. This corresponds to
the interpretation of E-as an event whose eventual
occurrence may be relied upon, but whose relative
frequency of occurrence is not necessarily stable or
known. A suitable explicatum in' probability
theory is that p(£) > 0, the event has a non-zero
probability of occurrence (the foundations of
probability theory in terms of computational
complexity®:*® show that any apparent philo-
sophical distinction between “frequent” events and
those of *‘non-zero probability” has no operational
interpretation).

(iti) Probable Event E is frequent and its relative
frequency of occurrence in a sequence of events
converges to a definite value, p(E), its probability
of occurrence. This is the type of event with which
we are most used to dealing using the methods of
probability theory.

One approach to incorporating these three
forms of uncertainty into a single logic has been
suggested by Gaines and Kohout,®® who have
shown that it is possible to take these three types of
event and add to them two further types, necessary
and impossible events (always or never occur,
respectively), to form a multi-valued logic. The
logic is mixed discrete-continuous since probable
events are represented by a number in the semi-
open interval (0, 1]. This approach is outlined in
the next section.

3.3 A Logic of Possibility, Eventuality and
Probability

Let us take the truth set, ¥, to consist of the semi-
open interval, R = (0, 1] and the elements, N, E,
P, I, whose interpretation is:

N—Necessary occurrence—probability equals
unity.

E—Eventual occurrence—probability unknown
but non-zero.

P —Possible—cannot say that it will not occur.
I —Impossible—cannot occur.

A truth value in R is a known probability of occur-
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tence which is not zero. We shall say an event is of
type R if its truth value is in R and will write R:p,
where p is its probability, toemphasize this.

The © operator over ¥ corresponds to two differ-
ent routes arriving at the same state—what can we
say if we know either x or y is true? A truth table
for @ is given in Table II. The o operator over V¥
corresponds to a state followed by a transition—
what can we say if we know that y follows x. A
truth table for -- is given in Table I11.

TABLE 11
Truth table for &

<] N E R:r P I
N N N N N N
E N E E E E
R:r N E Rirdr E R:r
' N E £ P P
I N E R:r P I
TABLE 111
Truth table for ©
© N E R:r P I
N N E Rir P I
E E E E P I
R:r R:r' E R:rr P I
P P P Y o P I
I 1 I F I I

Consider first the structure with R taken as a
single logic variable, ie. V= (N, E R P, I},
which allows for all the explicata of uncertainty
developed in section 3.2. Note that, without R, the
tables for ® and © are simply those of a 4-value
Post algebra, and hence can be mapped onto a
fuzzy logic. R, however, behaves anomalously in
that R®P = E whereas RoP = P, It has been
suggested by Brown®* that the V-set of a fuzzy
logic be taken to be a distributive lattice. However
the interaction of R and P is inconsistent with @
and © being lattice operations. This is a concrete
example of the need for more general truth sets
discussed by Goguen.'*

If we now consider the full truth set at first
specified in which R is actually a semi-open interval,
then the logic is now a mixed continuous discrete
structure which can, however, still be neatly
represented in the “truth tables”. Such structures

are both theoretically interesting and practically
necessary to obtain rich enough explicata of the
behaviour of uncertain systems.

It will be noted that the diagonals of the two
tables show the idempotency of the elements, and
the wider significance of this may be raised.
However, the individual elements of R are clearly
not idempotent in general (p+p # p, and pxp #
p, in general), and if we consider a variant on E,
such as G interpreted as *‘properly probabilistic™
(unknown probability in the open interval, (0, 1)),
then idempotency can be seen to fail even for a
discrete element (GeG # G).

Thus this multivalued logic of possibility and
probability illustrates the requirement for auto-
maton logics beyond those discussed in section 2.
In the following section we shall consider the
fundamental constraints upon more general logics.
However, having introduced the examples of this
section, it is appropriate to briefly summarize
further studies of mixed probability, eventuality
and possibility.

3.4 The Problem of Possibility

The muitivalued logic of section 3.3 provides an
improved account of the various forms of un-
certainty and their mixtures, false conclusions to be
drawn about possibilistic or eventualistic events,
and yet it contains a full account of truly probabil- -
istic events, However, it suffers from what appears
to be a fundamental defect of all attempts to account
for possibilistic, or non-deterministic, behaviour in
terms of a finite-valued logic. It is unable to sustain
certain forms of deduction leading to deterministic
conclusions about non-deterministic behaviour.

The problem of drawing conclusions about
possible events is best seen in terms of an example.
Consider the nondeterministic automaton of
Figure l—starting in SO, its future states are
indeterminate. However, even if we know only that
the transitions are possible, it is clear that the state
52 will certainly be entered at some time. If we
know also that the transitions are eventual then it
is also certain that the ultimate state will be S5. If,
in addition, the transition probabilities are well-
defined then we may also derive the expected time
for this state to be reached. This last conclusion is
a numeric result readily represented in probabilistic
terms, but what of the weaker results? They are not
in themselves quantitative but they do seem to be
based on an. underlying quantitative argument—
when the state will be S2 is uncertain but the *“total
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uncertainty” about that state sums to a certainty
that it will occur.

The normal representation of a non-deterministic
transition by a binary logical variable taking the
values 0 (impossible) and 1 (possible) cannot be
used to support this form of reasoning. For
example, Table IV shows the possibility of each

FIGURE | State transitions of a non-deterministic
automaton,

TABLE 1V
Binary form of nondeterministic hyperstates
Time 0 1 2 3 4 5
50 1 0 0 0 0 0
S1 0 1 1 0 0 0
$2 0 1 1 0 0 0
53 0 0 1 1 0 0
54 0 0 1 1 1 1
-85 1] 0 0 1 | 1

state of the automaton of Figure 1 at successive
clock times. It can be seen that the pattern of
behaviour for S2 is identical to that for S$3, and yet
we can see that S2 must occur whilst $3 may only
possibly occur. Claerly an exhaustive enumeration
of all possible paths from S0 to S5 will show that
S2 is on all of them whilst §3 is not, but such com-
binatorial searches become difficult when the
system is complex and contains loops (leading to an
infinite number of possible paths).

If the transitions were probabilistic the argument
could be based on a simple numeric calculation of
the total probability of each of the states, S2 and
S§3. What appears to be lacking in the binary
representation of possible transitions is the normal-
ization possible with probabilities that expresses
that the automaton is actually in one, and only one,
state, The normalization of the columns of Table 1
is appropriate to a non-deterministic automaton
(section 2.6) in that at least one of the states has the
value 1, but there is also the auxiliary rule that if
only one of the states has the value 1 then the
automaton is definitely in that state.

It is in the form of this auxiliary rule that the
weakness of expressing possibility in a finite-
valued logic seems to lie. To find out if the auto-
maton is definitely in a state we have to examine the
possibilities of all other states and show that they
are zero. This global argument contrasts sharply
with the local reasoning in the probabilistic case
that the automaton is definitely in a state because
the probability of that state is 1. There seems no
reason, however, why we should not retain this
“‘conservation law” so readily expressed in prob-
abilities without giving the actual numeric prob-
abilities anything more than a possibilistic inter-
pretation, i.e..—

(D) p(E) =0 E is impossible
(D2)0 < p(E) S 1 Eis possible
(D3) p(E) =1 E is necessary

A calculus of possibility based on these definitions
is quite simply developed and in fact gives non-
deterministic automata the structure of probabilistic
automata with the weakened semantics that, apart
from 0 and 1, the values of “probability’” have no
greater significance than that an event is possible.

A formal proof that a probability logic may be
used as a proper basis for a logic of possibility has
been given by Rescher?” (see Ref. 20, section 28.2).
He introduces modalities into the PL of section 2.9
by the stipulations:

(PB8) Necessity: LA =1 or 0 according as
P(A’) is, or is not, uniformly 1 for every
substitution instance, A", of A.

(P9) Possibility: MA =0 or 1 according as
P(A") is, or is not, uniformly 0 for every
substitution instance, 4, of 4.

The use of the concept of substitution instances is
necessary because the logic is not itself truth-
functional. Rescher®” has demonstrated that the
logic with these modalities is characteristic of
Lewis’ system S5 of modal logic®! in that its tauto-
logies are precisely those of S5, and vice versa.
Thus, whilst there is no finite-valued logic that
represents precisely the alethic model logic of
necessity and possibility, this (infinite-valued)
“probability logic™ does so.

If we consider only mutually exclusive events,
such as an automaton being in one or another of its
states, then it may be seen from P3 that the logic
becomes truth-functional. Valuations are then just
additive over the disjunction of events. Hence also
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P9 may be interpreted as, “an event is possible if
and only if its valuation is non-zero”, which may
be seen as a binary evaluation similar to the 0/1
representation of impossibility/possible in non-
deterministic automata. However we also have the
new rule based on P8 that, “‘an event is necessary if
its valuation is unity”. This corresponds to our
previous additional rule that if the disjunction of a
set of mutually exclusive events is necessary, and
only one of the events is possible, then that event
must be necessary. This is now derivable from the
purely arithmetic effect of the additivity of positive
valuations, i.e. if the sum of a set of numbers is 1,
and all but one of those numbers is zero, then that
number must be 1.

It is interesting to compare this with the cor-
responding rule of the modal logic S5 (T28 in Ref.
31, p. 51) that:

L(A v B) > (LA v MB)
which clearly extends to multiple events:
LAvBvCv. . )o(LAvMBv MCv..)

i.e. if it is necessary that at least one of a set of
events occur then either one of the events is
necessary or some of the others are possible. Hence,
from the impossibility of all but one event we can
infer the necessity for that event. It can be seen that
what the ‘probability logic” of S5 does is replace
a process of logical deduction with one of arithme-
tic. The failure of a binary representation of
possibility to do this may itself be seen as a demon-
stration of the impossibility of characterizing S5
with a finite-valued logic.?®

Thus a correct model of the behaviour of a
possibilistic automaton may be based on what is
cffectively a probabilistic automaton with the
weakened interpretation of “‘probabilities” given
by DI through D3. A re-analysis of the automaton
of Figure | using this interpretation shows that the
difference between states S2 and S3 that was
previously obscured is now apparent. Table V is
the new version of Table IV. To show the generality
of the result symbols have been used rather than
numbers—a and b are any numbers in the open
interval, (0, 1). The final column gives the sums of
the elements in each row, For SO through S3, since
the automaton being, for example, in S2 at time 1
and at time 2 are mutually exclusive possibilities,
the sum properly represents the total possibility of
the automaton being in the state. It can be seen
that S1 and S3 are only possibly entered but that
S§2, for which the total is 1, will be necessarily

entered. The sums for 54 and S5 are not meaningful
because the loops in the state diagram rule out
mutual exclusion and hence the additivity of
possibilities.

The penultimate column of Table V shows the
final possibility of the automaton being in each of
its states. Whilst that for S4 is asymptotic to 0 and
that for S§ is asymptotic to 1, both are essentially

TABLE V
PL Form of nondeterministic hyperstates

Time 0 1 2 3 4 Final Total

SO0 10 0 0 0 o0 1

51 0 a 0 0 0 0 a

§2 0 l-a a 0 (i} 0 1

S3 00 b(l1—a) ba 0O 0 d

sS4 0 0 (1=b)1=a) >0 >0 =0 —

S5 00 0 >0 >0 =] —
Total 1 1 1 1 1 1 —_

non-zero for all time and hence, if the transitions
are possibilistic, the most we can say is that both
states are ultimately possible. This serves to illus-
trate an essential distinction between the analysis
of possible and eventual behaviour since, if the
transitions are eventual, we may show>® that an
asymptotic approach of the possibility of an event
to unity indicates that that event must ultimately
necessarily occur.

This section has demonstrated the role of an
appropriate interpretation of PL as a full logic of
possibility that allows all, and only, those con-
clusions to be drawn about the behaviour of a
possibilistic system that are justified by its seman-
tics. Gaines®® has also given a suitable inter-
pretation for PL to be a full logic of eventualistic
systems as noted in the last paragraph. Thus again,
as noted in section 2.9, the probabilistic automaton
model seems to have a central role in system
modelling in that it subsumes all others. However,
whilst a PL based on scalar probabilities in the
interval [0, 1] is an adequate basis for any one of
the three logics of possibility, eventuality and
probability, it is inadequate to account for the
behaviour of mixed systems involving any two, or
all three, types of event. It can be shown that a
vector probability®® is both necessary and sufficient
to account for the behaviour of such systems, with
@ being conventional vector addition but © being a
rather strange form of vector “multiplication™.
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However, within the main terms of reference of this
paper, the discussion of this section has served to
indicate that the conventional spectrum of automata
analysed in section 2 is not adequate to provide
models for all systems of practical interest. The
following section reverses the approach and con-
siders the most general form possible for an auto-
maton.

4. THE GENERAL CASE

In this section we shall draw on the arguments and
examples of sections 2 and 3 to develop the most
general form of automaton structure that is con-
sistent with the notions of state, and state-deter-
mined. The final part of the section is concerned
with the other general theoretical questions such as
topological models of automata and the role of
inputs and outputs.

4.1 Semirings

We have noted in section 3.3 that the truth-set
need not be a fuzzy set or a distributive lattice, and
that the elements need not be idempotents under
® or ©. In the example of the previous section it
can be seen that ® and e are both associative and
commutative and that o distributes over &, i.e.
together they give the truth set the structure of a
commutative scmjring. It is also apparent that this
semiring is positive*® (p. 125) in that if we con-
sider the zero element (/ in Tables II and ILI) then:

adb=I—-a=I=5% (19)
and:
acb=[—-a=Jorb=1 (20)

The example of section 3.3 shows that a stronger
structure would be too restrictive. However, the
question remains of whether a positive commuta-
tive semiring is still too strong a structure on which
to base automata theory. The following notes
outline arguments to show on fundamental, and
intuitively satisfying, grounds that at least an
ordered semiring is necessary.

First consider the operator, ®, which represents
the combination of different trajectories to the
same state. Trajectories may be combined in pairs
so that this gives the truth set the structure of a
partial groupoid (partial because some pairs of
values may not arise and hence their result is
undefined, e.g. probabilities of 1 and 1). However,

we must also take into account the independence of
trajectories, that they represent alternative paths
and there should be no effect of order or grouping
when combining them. This implies that @ is
necessarily commutative and associative, and
hence defines a partial commutative semigroup over
the truth set (it may be taken as a partial monoid
by adding the null trajectory as an identity element).
We may drop the term “‘partial” in general by
noting that the “‘don’t care” conditions can always
be fitted in to complete the monoid. -

Even these constraints do not fully represent the
necessary structure since each trajectory termina-
tion in a state can only add to our knowledge about
the automaton being in that state. There can be no
cancellation of information obtained by consider-
ing independent trajectories. One possible expres-
sion of this is to require the monoid to be positive,
so that:

a,beV,aeb=0—-a=0=0b (21)

where O is the identity element of the monoid
written additively. It can readily be seen (by adding
a or b to each side of the left equation of 14) that
if the elements of the monoid are idempotent
Eq. (14) automatically holds. Idempotency also
implies the natural order on the monoid is a semi-
lattice, That is defining a relation, Z, on ¥ in terms
of &:

a,beV,az be3c.a=bdc (22)

Unfortunately the positivity condition of Eq. (21)
alone does not guarantee that this is even a partial
order, and it seems that the best statement of the
constraint upon the monoid is that the natural pre-
order on it defined by Eq. (22) is actually a partial
order. This itself implies that the monoid is
positive and is implied if the elements are idempo-
tent. Intuitively, this order relation corresponds to
our having two independent sources of information
about a state which cannot cancel—taken together
they must give at least as much information as
either alone.

The operator © presents more interesting prob-
lems since it represents the interaction between
states and transitions, and there is no a priori
reason to suppose that they can be expressed in the
same language. Let us start with the more general
assumption that the transitions are drawn from a
set of functions, F = {f: ¥ — V}. Considering the
same argument as for @, it can be seen that the
result of applying a function to each individual
trajectory separately (and then combining them)
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must be the same as applying it to them already
combined—i.e. the functions must distribute over
0:

SfeF,a,beV, flazh) = (fa)o(fb)  (23)

The implications of distributivity are not
intuitively obvious and they may be expressed more
meaningfully in terms of the order relation of
Eq. (22), since Eq. (23) shows that /' must be isotone
with respect to 2. Again we may argue that a
transition cannot in itself increase information
about a state so that f must be isotone nomn-
increasing.

The isotone non-increasing mappings over the
truth set clearly form a semi-group which can be
extended to be a semiring by the definitions:

S 8heF,h=/fog«acV, ha=_gfa (24)
and:
[, heF, h=foge
a€V, ha = facga (25)

The partial order defined by Eq. (22) has a natural
extension to F in terms of Eq. (25) and this in turn
implies that F under © and ¢ is a positive semiring.

There are a number of possible monomorphisms
injecting ¥Vinto F, u: ¥V = F, such that:

aeV,feF,ufa) = wayf (26)

and:
a,beV, u(adb) = p(a)eu(b) 27

i.e. p imbeds V into the endomorphism semiring in
such a way that the ® and o operators have a
common interpretation in both structures. It is the
existence of such imbeddings that enable us to use
a common language to describe both hyperstates
and their transitions.

It will be noted that the examples given previ-
ously are such that ¢ is commutative whereas no
informal arguments have been put forward here to
suggest that this is true in general. It is easy enough
to generate simple structures in which © is not
commutative but all our other requirements are
satisfied. We have yet to find a semantics for such
structure to show that they are necessary. Con-
versely there appears to be no argument on the lines
of those advanced to suggest that such a semantics
is not possible.

4.1.1 The role of idempotency If one accepts the
informal arguments of the previous section in
terms of the monoid over V representing “informa-

tion” about the automaton being in a state then it
would be natural to assume that its elements were
idempotents, i.c. that getting the “same” informa-
tion a second time contributed nothing extra. Only
the probabilistic case gives a counter-example, and
here the “information” is a value rather than a
datum. v

Suppose however that instead of considering the
probabilities themselves one considers the under-
lying Borel set structure of the o-algebra for the
probabilities. Then the “information™ consists of
disjoint sub-sets whose measures correspond to the
probabilities and if = is regarded as the union opera-
tion on the sub-sets it is, of course, idempotent.

In this case our semiring becomes a lattice, as it
was for all the non-probabilistic examples given.
Thus it might well be that an intuitively satisfying
axiomatization of automata theory could lead to
the stronger structure of a lattice, rather than a
semiring, providing one¢ is prepared to carry the
full structure of a measure algebra when carrying
results over to probabilistic automata.

This suggestion throws further light on the
relationship between fuzzy and probabilistic auto-
mata. The normalization conditions are the same
in that the joins of the truth values for all the states
should be units, but the fuzzy truth values must
form a linearly-ordered chain (a *‘vertical” section),
whereas the probabilistic truth values must form a
totally unordered set (a “*horizontal” section) whose
meets are zero.

4.2 Topological Models of Logics and Automata

The remarks of section 4.1.1 suggest that one
should examine topological models of automata
rather than purely logical models. There is of course
a close relationship between multivalued and modal
logics and general topologies*! that has been devel-
oped as a powerful tool in logical studies.*?'*? For
cxample, we may employ an AIOU-topology*' as a
semantic model of the S4 modal logic.**

Some more recent results in automata theory
indicate the way in which these relationships may
be further exploited. On the one hand, we have
theories using metalanguages based on the pro-
positional calculus (PC) for the synthesis and analy-
sis of automata,*? with, on the other hand, various
semantic theories for a variety of types as analysed
in this paper. In the first case we have a model Lpc
—Aut with statements about automata in Lgg,
and with transitions and states as primitives in its
model Aut. In the second case we have valuations
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from Aut into V according to the given type of
automata. These are represented diagrammatically
in Fig. 2. All sentences which are true in Lyop must
be true in Aut and in V. In other words Aut has to
be a model of Lysop, and V a model of Aut. Lpc has
to be extended to a suitable modal language Lyop,
taking into account modalities such as possibility,
eventuality and necessity. Formal proof techniques
may be employed in this research as suggested by
Snyder,’ in a manner similar to that being
developed for the logic of protection.*®

[zodalitien) [tranaitions, states [semirings]
as primitive terma]
Lyop —> Aut / v

{z,7)

FIGURE 2 Relation between models,

So far we have been concerned with a suitable
choice of V and with a valuation from Aut to V for
simple automaton structures. The approach may be
extended to include less orthodox structures, ¢.g.
Syst,, describing a particular general systems
theory.*” We may also compare primitive terms of
various system theories, Syst,, Syst,, etc., for a
particular valuation and to find a common fragment
of Lyops 80d Lysops, giving the structure shown in
Fig. 3. This may be regarded as deriving a formal
analogy relation*® between the two systems.

FIGURE 3 Relation between systems.

In order to be able to carry out such comparisons
we have to ensure that the middle part of the struc-
ture (i.e. Syst or Aut) is expressed in topological
terms compatible with the semantics of modal
languages. We have already emphasized*' the
importance of generalized topologies for general
sytems theories. It can be shown that the set of all
sub-automata of a given automaton forms an

AIOU-topology. The accessibility of a subset of
states may therefore be interpreted as possibility in
S4 modal logic. Necessity corresponds to an
interior in a given AIOU-topology,*® and repre-
sents the states which have to be necessarily
accessed from a sub-set.

However, the S4 system of modal logic inter-
preted in this way does not make any distinction
between past and future. A closer look at the
AIQU-topology of an automaton shows that it
contains a further structure which is that of an
ordered topological space.®® It is not therefore
surprising to find that the temporal modal logics
are fairly subtle refinements of an S4 system.*!
Prior’s work?®! on such logics pays no attention to
automata or general systems theory as such and
stems from the basic philosophical traditions of
Diodorus.*? However, the open-minded reader will
find that Prior’s examples may be directly trans-
lated into a fundamental discussion of stability,
reachability, controllability, etc. in automata and
more general systems, and may some day be recog-
nized as a major contribution to this field.

This development in logic has been parallelled or
preceded by work examining related ropological
structures, but unfortunately there has been little
linking between these two fields. A closer examina-
tion of V-sets reveals that we can introduce top-
ologies into it in several different ways, on two
distinct parts of a V-set. For example, the AIOU-
topology defining the set of all subautomata of a
given automaton is given on the carrier S of the V-
set. The operator 6 may or may not preserve the
topological axioms which hold for S. It is obvious
that convergence and limit points in generalised
topologies*! defined on ¥ will play an important
role in determining those hyperstates which are
probabilistic. It appears that for general automata
structures multivalued convergence structures may
be necessary.*?

Development of the theory of sequential spaces
aiming at more general models of probability fields
opens new pathways in this research. In section
4.1.1 we have already pointed out that axioms for
automata structures may lead to a lattice if we are
willing to consider g-sets. A major contribution
investigating the relationship between measure
theory and convergence spaces (in generalised
topologies) is the work of J. Novak (for references
see 41, 54, 62). His research on L-spaces*' aims at
the investigation of basic notions of probability,**
and an interesting parallel with the developments
in logic outlined above can be observed. Novak
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has shown that probabilistic events do not have to
be interpreted as subsets (as has been done by
Kolmogorov) or elements of Boolean algebra.’®
However, it is essential that they form an algebra
which is also a L-space and that the probability is
an additive continuous function in L-topology.*®’
Related questions of the classification of functions
measurable with respect to a particular o-algebra
is considered in Ref. 58. In general, development of
the theory of sequential spaces, theories of groups
and algebras endowed with convergence and of the
algebraic operation being continuous with respect
to the convergence may play an increasingly
important role in general systems and generalised
automata research. A fundamental example of a
sequential algebra is that of the algebra of subsets
of a given set.*® The group operation is the
symmetric difference, the multiplication is the set
interesection and the convergence structure is the
set convergence of sets (i.e. A =IlimA, <
liminf A, = lim sup 4,).

The generalised topological algebras discussed
(with a topology defined with respect to the alge-
braic operation) pose problems quite distinct from
that given by traditional topological groups, semi-
groups and algebras, so that it is not possible to use
the experience of traditional developments or that
gained from the development of uniform spaces.
This leads to new- mathematical problems which
may be quite complex, for example, the case given
in Figure 1, showing non-additivity in the states
S4 and S5, would suggest that convergence semi-
groups should be developed.

The relationships between languages, logics and
topologies have been explored over many years.
However, their impact on general systems theory
has yet to come. Their importance seems to lie at
that half-way house between general mathematical
formulations and particular practical applications
where the semantics under consideration has itself
a high degree of generality.

4.3 The Roles of Inputs and Ouitputs

This paper has been primarily concerned with the
semantics of hyperstates and their transitions, and
the roles of inputs and outputs, generally important
topics in automata theory, have so far been neg-
lected because neither plays a major role in deter-
mining possible automaton structures. Inputs may
be described in terms of a mapping from a set of
possible inputs to that of legal transition functions,
and outputs may be described in terms of a mapping
&

from the set of states (or the product of states and
inputs) to the set of possible outputs. However, there
are aspects of inputs and outputs that only become
apparent within the framework of hyperstate
transitions developed in this paper and are not
significant for conventional state-determined
machines. In this section we will briefly discuss the
symmetry between inputs and outputs, and the
possibility of representing a hyperstate transition
function as due to a hyperinput over normal state
transition functions.

In the basic definition of a state-determined
machine there appears to be a fundamental asym-
metry in the roles of inputs and outputs. The input
function plays a major role in determining future
behaviour in that the NSF is determined by it.
However, the output function is simply a mapping
that loses information about the state (we will
assume a Moore model in which the current output
is a function of the current state only), and since
the state itself is well-defined by the previous state
and input this “loss” is not a real one—the output
function plays no real role and is often assumed to
be an identity map.

However, when the previous state, or the input,
is uncertain, the next state is not well-defined by the
NSF and the output comes to play a far more
important role. For example, if the output function
is an identity map then even though the predicted
next “state” is a non-sharp hyperstate it becomes
sharp immediately the output is observed. Thus the
output is no longer redundant and in this extreme
case it may be used to determine the current state
whilst the previous state and hyperinput cannot do
s0.

In intermediate cases, where the output function
is not information-lossless, both the previous input
and the current output are relevant to determining
the transition from the previous to the current
hyperstate, Thus, whilst the deterministic case leads
one to regard the NSF as being a function of the
input, in the other cases it is best regarded as a
function of the input-output pair. This is exempli-
fied in the definition of a system state and in the
literature on system identification where a state is
defined in terms of the relation between input-out-
put segments and state identification consists of
reducing a general hyperstate to a sharp hyperstate
by considering the intervening input-output
segment, ' '

Hence, in general system-theoretic terms, we
may regard the input-output pair as a datum about
a system, the input-component of which is at our
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choice but the output-component of which is not
and may only be determined through-observation.
This viewpoint confounds two components of an
automaton structure which are normally regarded
as quite distinct. However, this smearing of dis-
tinctions is inherent in the very generalization of the
concept of an automaton that lead to the definition
of a hyperstate since this itself confounds the
structural properties of a state-determined machine
and the uncertainty of an observer about its exact
states and inputs.

It is interesting to demonstrate that this smearing
is intrinsic and that no decision-procedure may
distinguish between the NSF itself being non-
deterministic and the NSF being completely
deterministic but the input being imprecisely
defined. This is readily seen if, for any state set S,
we consider the family of all possible deterministic
NSF’s over S and regard each one as being selected
by some particular input. Now any particular NSF
may be decomposed by selecting the least non-zero
element in its transition matrix and subtracting out
an appropriate deterministic matrix whose corres-
ponding input is weighted according to the value of
the element (this can always be done provided the
semiring is fully ordered). Repeating this procedure
until there are no residual non-zero elements gives
the hyperinput corresponding to the NSF.

5 SUMMARY AND CONCLUSIONS

The overall objective of this paper has been to
relate the formal mathematical aspects of automata
theory to the basic semantics of the notions of state
and state-determined systems. In particular we
have concentrated on the generalization of the
concept of a state/input-determined machine to
that of a hyperstate/hyperinput determined machine
(section 2.1).

We first explored the conventional spectrum of
deterministic/probabilistic / fuzzy/non-deterministic
automata (sections 2.3-2.6) and showed that these
may be fitted into a single common framework with
the same transition and normalization equations
(section 2.7) but with the truth set being either the
closed unit interval or its end points, and the opera-
tion being either arithmetic add/multiply or logical
OR/AND (section 2.8). An alternative interpreta-
tion of the normalization of fuzzy states was pro-
posed (section 2.4.1), and the relationship between
fuzzy and probabilistic automata was shown to
stem from a common basis in probability logic
(sections 2.8.1 and 2.9).

We then went on to demonstrate that although
the conventional spectrum of automata does form
a natural set, closed in some sense, it is inadequate
to provide models for various forms of uncertain
system behaviour encountered in studies of reli-
ability and stability (section 3.1). Possible, eventual
and probable events were defined (section 3.2) and
a mixed continuous/discrete logic developed for
them that did not have the common properties of
the logics of the automata already studied (section
3.3). It was also demonstrated that the conventional
use of a two-valued logic for non-deterministic
automata was inadequate to support certain
legitimate arguments about their behaviour (section
3.4), and it was shown that a modalized probability
logic was adequate to do this (section 3.5).

Finally, the most general formal structure for an
automaton that is consistent with the notions of
state and state-determination has been developed
(section 4.1). This turns out to be a positive ordered
semiring. The remaining sub-sections then explore
some further questions raised in passing, that of the
relationship between topological and modal logic
models of automata (section 4.2) and the role of
inputs and outputs in g’eneralizcd automata
(section 4.3).

This has been an exploratory paper with the
objective of developing a new approach to automata
theory on firm semantic foundations rather than
giving a complete formal model with the minimum
of justification. General systems theory needs an
armoury of system types which may be used as well-
tried weapons to overcome new problems. It is
vital that those weapons are well-understood both
intuitively and mathematically so that the precise
impact of their powers and deficiencies can be
weighed in advance. We hope these notes have made
some contribution to such an evaluation.
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