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Automata arc the prime exarnptc of general system ovtt d h t  spa- and yet tht  thcory OF automata is frag- 
mentary and it is not clear what makm a general s m c t l m  an automaton. This paper inve~tigala the logiul 
foundations ob automata relating it to the semanricj o l  our n m i m  or wccrrainry, $rare and rrarr-determincd. A 
single rtammork is ntablished for the conventional smnun of automata: dcrrrmlnisric, prohdilbric, furr).. and 
non-dcfcrrnhu~ic, which show this set to k, in some scm. complerr. Countcr-exampla arc then dtveloped to show 
that this spectrum alone is indcquatc to d&bc the bthaviourofccrtmn forms of unccna~nsptcm. Finally a general 
formu!ation is dtwloped b w d  on the fundamental scmantifs of our notion oln state that sham that the losirnl 
structurr of an automaton must bc at  I a t  a p s i f i v c  ordcredsemhing, The role oiprohblllty Iogic, its rrlation- 
ship 10 furry logic, the roln o l  rupolo~cal models of automata. m d  the symrnclty ktwmn iopuu and outputs in 
hypstarefLy~~inputdctc~rnind syrtcm are ako discusxd. 

INDEX TERMS Automata. state, l d c .  probability, f w y ,  deterministic, nondamnininic, mabl ,  multi- 
valued, semiring. 

I INTRODUCTION 

There is a danger in all general sptems theories 
that the generality may be carried too far. That is 
the possibilities encompassed by the formaiism 
may go beyond those rquired by the semantics of 
any appticatjon or, worse, the '"general" cast may 
include instances that haw apparent applications 
but which actually codict  with the assumed 
semantics. In his  paper we are concerned with the 
semantics of discrete, statedetermined systems, or 
ourcmata, and with the most general formalism 
that encompasses all cases of iatemt and yet 
adheres stricdy to the semantics of our aotions of 
"statc" and "automaton". 

Automata thtory as a subject area p w  natur- 
d l y  out OF the work of TuringL in the thirties on the 
mathematics of computation in which the notion 
of an abstract, statedetermined machine played a 
major role. This concept was immediately attrac- 
tive not only in its obvious role as s foundation for 
the design of relay switchingcircvits and the nascent 
digital computer, but also as a m d e l  of biological 

phenomena in neural networks (e.g. the work of 
McCulloch and Pitts'). The wide ranging interests 
obvca Neumann3 encompassing, andmaking major 
contributions, to both computers and biology 
firmly established this dual role: of automata theory 
in tZrt early fottics quite independently of any 
spxulatiom about lthc relationship betwten the 
computer and the brain. 
Thus automata thcory dcvcloped as a general 

systems too1 from the beginning. However, it is 
intcmting to note that in the late fortits Wiener' 
in proposing the integrative viewpoint of cyber- 
netics, and Bcrtalanffys in proposing the trta 
widtt ranging viewpoint of gtneraI sysrem theory, 
exemplify their approaches with the differential 
quations of continuous systems rather than the 
discrete space fonnulatians of automata thmry, It 
was left to the brilliant expositions 06 Ross 
,4shby6-' in the early fifties to dtmonstratc the 
major role oh automata theory, eomplerntnury to 
that of continuous systems theory, in such general 
approaches to naltural and artificial systems. 

Thc joint origins of automata theory in biology 
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Automata are the prime example of general systems over discrete spaces, and yet the theory of automata is frag­
mentary and it is not clear what makes a general saucture an automoton. This paper investigates the logical 
foundations of automata relating it 10 the semanlics of our ootio", of uncertainty, Start and Jlau-dtttrmintd. A 
sinsle framework is established for the conventional spectrum oC automala; deterministic, probahilistic. fuzzy, and 
non-dtttrminisl;c, which shows this set to be, in some sense, comptttt. Counler<xamples arc then developed 10 show 
that this s~ alone is inadequate to describe the behaviour of cenain forms of uncenain system. finally a general 
formulation is developed based on the fundamenUll semantics of our Dotjon of a s t3te that shows that the logical 
struCture of an automaton must be at'lea.st a JJQsitive ordered stmiring. The role of profxlblllty logic, its relation­
ship 10 funy logic, the roles of topotogical models oC automata, and the symmetry between inpUts and outputs in 
h)'p~rJ/ali!lhyp~r;npul-dtttrm;ntd systems ace also discussed . 

INDEX TERMS Automata, state, logic, probability. fuzzy, deterministic, non-detenninistic, modal, mulli­
valued, semiring. 

INTRODUCTION 

There is a danger in all general systems theories 
that the generality may be carried too far. That is 
the possibilities encompassed by the formalism 
may go beyond those required by the semantics of 
any application or, worse, the "general" case may 
include instances that have apparent applications 
but which actually con.fl.ict with the assumed 
semantics. In this paper we are concerned with the 
semantics of discrete, state.determined systems, or 
automata, and with the most general formalism 
that encompasses all cases of interest and yet 
adheres strictly to the semantics of our notions of 
"state" and "automaton", 

Automata theory as a subject area grew natur­
ally out of the work of Turinr in the thirties on the 
mathematics of computation in which the notion 
of ao abstract, state-determined machine played a 
major role. This concept was immediately attrac­
tive not only in its obvious role as a foundation for 
the design of relay switching circuits and tbe nascent 
digital computer, but also as a model of biological 
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phenomena in neural networks (e.g. the work of 
McCulloch and Pilts 1). The wide ranging interests 
of von N eumann 3 encompassing, and making major 
contributions, to both computers and biology 
fi.rmly established this dual role of automata theory 
in the early forties quite independently of any 
speeuJatioDS about the relationship between the 
computer and the brain. 

Thus automata theory developed as a general 
systems tool from the beginning. However, it is 
interesting to note that in the late forties Wiener4 

in proposing the integrative viewpoint of cyber­
netics, and BertalanffyS in proposing the even 
wider ranging viewpoint of general systems theory, 
exemplify their approaches with the differential 
equations of continuous systems rather than the 
discrete space formuJations of automata theory. It 
was left to the brilliant expositions of Ross 
Ashby',7 in the early fifties to demonstrate the 
major role of automata theory, complementary to 
that of continuous systems theory, in such general 
approaches to natural and artificial systems. 

The joint origins of automata theory in biology 
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and computer cngincering have been succinctly 
reviewed sccently by Burks.' I n  a related survey 
~ r b i b ~  criticizes the applicability of  current 
automata theory and suggests that many new 
developments and extensions arc required. This 
criricisrn will be cchwd by those who have recog- 
nized the concepts of automata theory as relevant 
to their own disciplines but have k n  disappointed 
En the dearth of applicable results. 
The convictions, on the one hand, that the basic 

CQnCCptS of automata theory are relevant but, on 
the other, that the present developments arc: not 
sufficiently fruitful have prompted several workers' 
t o  investigate new automaton structures, e,g. 
Arbibk restriction of state transitions to  represent 
generalized continuity in roleronce automaral " 
nnd Zadeh's generalization of state transitions to 
represent non-probabilistic imprecision in fuzzy 
automata." Through the very diversity of interests 
involved automata theory has grown up pimmeal 
with a variety of automaton structures and semantic 
interpretations, The continuing intermittent addi- 
tion of new structures reinforces the impression that 
not just the devcIoprnent of the subject but perhaps 
also its foundations arc, in some sense, incomplete. 

This paper was motivated by our own experi- 
ence in tipplying algebraic systcm theory to prob- 
lems of system identification, stability and control, 
where we have found it necessary to define auto- 
maton structures that do not fit the conventiond 
spectrum of dcttrministic, stochastic, fuzzy and 
non4etetministic automata. These new structures 
initially appeared to be rtprrscntable as automata 
over modal logics rather than Boolean algebra. 
However, the nctd soon became apparent for 
mixed logics involving conrinuous probability 
intervals as well as dishete modalities, and the 
variety of possibilities led us to look for some more 
general approach. 

It has bctn shown by Santos and ~ t c ' " t h a l  the 
main s w m  of deterministic, stochastic, f u a y  
and aon-dctmninistic automata can k fined into a 
single formalism, but this is dcsmiptivc rather than 
axiomatic, It leaves open many questions: whcther 
further automaton structums cnn be invented ad 
infiniturn; what is the most genttal  formulation; 
and so on. The search for generality is i t ~ l f  
dubious unless backed by definite practical require- 
ments expressed as semantic constraints. In this 
paper we take three distinct approach- to the 

* problem of cstabiishing the most general: structure 
possible for an automaton : anaiysing fimt a sense 
in which the conventional spectrum of  automata is . 

already complete; secondly arguing from practical 
application rquircmtnts that this spcctrum is 
inadequate; and thirdly, reversing the dirmion of 
increasing generality, to show by foondatianal 
arguments that certain quite powerful structural 
consmints arc necessary to an acceptable concept 
o l  an automaton, i.e. that arbitrary algebraic 
szmctums formally similar to automata do not 
nmssari ly possess viable semantics. 

2. CONVENTIONAL AUTOMATON 
STRUCTURES 

2.1. The Generalization to Hyperstates ntrd 
Hyperinpu rs 

The key concepts in automata theory are clearly 
those oTa srofe and the behaviour of a systcm being 
state-determined. Both the role of thcst conccprs 
in rnodem~sys~cm theory and their formal status 
have been lucidly analysed by Zadeh13.L4. Givcn 
that an automaton is a discrete-time, discrete-state- 
space, state-determined machine, at first sight there 
appearr little scopc for generalization. The entire 
structure is well-defined and may be pmenltd as a 
function mapping the current start and input into 
the next state (dixussion of the role of the ssate- 
dependent or statelinputdependent uurpur will bc 
deferred to section 4). 

However, neither the actual cumnt stat t  of an 
automaton not its cumnt input are neecswrily 
wtll-defincd. Sot example, we may know only the 
probabiIiry disrrihtion of possible a n e n t  states, 
or o i  possible cumnt inputs. In either cast the next 
statc of the automaton will not ncc#ady bt a 
single statc but will probably also lx known only as 
a distribution. lt is a convenient generalization of 
the concept of an automaton to consider transi- 
tions not just betwen states but bttwttn such statc 
distributions, regarding distributions over orates 
and inputs as generalized "states" and "inpurs", 
respectively (the terminology of hypersfates and 
hyperinpurs is convenient in making this generaliza- 
tion). 

It is this cxtmsion of the concept of statelinput- 
determind to what might k mEld hyperstatel 
hypcrinpuzdetmaincd systems that we shall 
analyse. Note that the basic concept oh a statc still 
q u i r t s '  that the automaton be regarded as k i n ?  
in  only one state at a time, although the actual 
cumnt state may be uncertain. Those hypcrs~atcs 
that correspond to no uncertainty, ta the auto- 
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and computer engineering have been succinctly 
reviewed recently by Burks. 8 In a related survey 
Arbib' criticizes the applicability of current 
automata theory and suggests Ibat many new 
developments and extensions are required. This 
criticism will be echoed by those who have recog­
nized the concepts of automata theory as relevant 
to their own disciplines but have been disappointed 
in the dearth of applicable results. 

The convictions, on the one hand, thllt the basic 
concepts of automata theory are relevant but, on 
the other, that the present developments are not 
sufficiently fruitful have prompted several workers' 
to investigate new automaton structures, e.g. 
Arbib's restriction of state transitions to represent 
generalized continuity in tolerance automata' 0 

and Zadeh's generalization of state transitions to 
represent non-probabilistic imprecision in fuzzy 
automata. 11 Through the very diversity of interests 
involved automata theory has grown up piecemeal 
with a variety of automaton structures and semantic 
interpretations. The continuing intennittent addi­
tion of new structures reinforces the impression that 
not just the development of the subject but perhaps 
also its foundations are, in some sense, incomplete. 

This paper was motivated by our own cxperi. 
encc in applying algebraic system theory to prob· 
lems of system identification, stability and control. 
where we have found it necessary to define auto­
maton structures that do not fit the conventional 
spectrum of deterministic, stcx:;hastic, fuzzy and 
non-deterministic automata. These new structures 
initially appeared to be representable as automata 
over modal logics rather tban Boolean algebra. 
However, the need soon became apparent for 
mixed logics involving continuous probability 
intervals as well as discrete modalities, and the 
variety of possibilities led us to look for some more 
general approach. 

It has been shown by Sanros and Wee11 .that the 
main spectrum of deterministic, stochastic, fuzzy 
and non-deterministic automata can be fitted into a 
single formalism, but this is descriptive rather than 
axiomatic. It leaves open many questions: whether 
further automaton structures can be invented ad 
infinitum; wbat is tbe most general formulation; 
and so on. The search for generality is itself 
dubious unless backed by definite practical require­
ments expressed as semantic constraints. In this 
paper we take three distinct approaches to the 

. problem of establishing the most general structure 
possible for an automaton: analysing first a sense 
in which the conventional spectrum of automata is . 

already complete ; secondly arguing from practical 
application requirements that this spectrum is 
inadequate; and thirdly, reversing the direction of 
increasing generality, to show by foundational 
arguments that certain quite powerful structural 
constraints are necessary to an acceptable concept 
of an automaton, i.e. that arbitrary algebraic 
structures fonnally similar to automata do not 
necessarily possess viable semantics. 

2. CONVENTIONAL AUTOMATON 
STRUCTURES 

2.1. The Gt'neralization to Hyperstales and 
Hyperinputs 

The key concepts in automata theory are clearly 
those of a stale and the behaviour of a system being 
stale-determined. Both the role of these concepls 
in modem ' system theory and their formal status 
have been lucidly analysed by Zadeh'3.14. Given 
that an automaton is a discrete-time, discrete-state­
space, state-detennincd machine, at first sight there 
appears little scope for generalization. The entire 
structure is well-defined and may be presented as a 
function mapping the current state and input into 
the next state (discussion of the role of the state­
dependent or Slate/input-dependent Olltput will ~ 
deferred to section 4). 

However, neither the actual current state of an 
automaton nor its current input are necessarily 
well-defined. For example, we may know only the 
probability distribulion of possible current states, 
or of possible current inputs. In either case the next 
state of the automaton will not neeessarily be a 
single state but will probably also be known only as 
a distribution. It is a convenient generalization of 
the concept of an automaton to consider transi· 
tions not just between states but between sucb state 
distributions, regarding distributions over states 
and inputs as generalized "states" and "inputs", 
respectively (the terminology of hyperstales and 
hyperinputs is convenient in making tbis generaliza· 
tion). 

It is this extension of the concept of state/input­
determined to what might be called hyperstatel 
byperinput-determined systems tbat we sball 
analyse. Note tbat the basic concept of a state still 
requires' that the automaton be regarded as being 
in only one state at a time, although the actual 
current state may be uncertain. Those hyperstates 
that correspond to no uncertainty, to the aute-
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maton actually being i n  a single state, will be called 
sharp. 

Thc conwcntioaal generalizaltions of deterministic 
automaton to probabilistic, fuzzy, and nondeter- 
ministic automata are examples of allowing certain 
foms of hyperstate. In thc following sub-setions 
we shall first consider a common notation for cach 
of these forms and then analysc in detail the rela- 
tionships between them. 

The conventional Forms of hypcrstatc can all be 
represented as mappings from thc set of states, S, 
to a truth-set, Y, S :  S -, V.  We shall adopt in the 
paper a notation for mappings of stares that avoids 
parentheses and subscripts since both orten 
obscure t h t  tsscntial simplicity of automaton 
operations. d will be treated as a unary operator 
b~nding on the nght so that we may write ds for 
the image in V of s E S. Gogucn" carls a mapping 
such as 6 a V-set with S as carrier. 

For the purposes of describing automata states 
we also require a normalizarion condition 
tx~ressinp that the automaton is actually - 
in'anc and only one state. We shall later tak; 
V to bc a scrniring with binary operations, 
Q (we do not use "+ 'kausaust it can be confused 
with arithmetic f ) which is associative and cam- 
mutative, and o which is associative, often com- 
mutative, and distributes over @. Both @ and o 
will be regarded as infix operators mapping 
V x  V + V such that 6 taka precedence over o 
which itxlf takes p d e n c c  ovcr a. It is con- 
venient to express the normdzation condition in 
terms of the formal expmaion, @,..$s, meaning 
the result of operating orcr the entire codomain of 
d in the truth-set with e {i.c, '>summation" if e is 
actually + -we assume such an operation is wcII- 
defined if S should be infinite). By suitable choice 
of V and s wc will show that the normalization for 
all four cases to be considered may be taken to be: 

B,,sa.r = 1 C1) 

where 1 is a "zero" in V for o. 
As a further aid to brevity in notation we shall 

adopt a eonvtntion, similar to that of the tensor 
calcu [us, that summation over repeated dummy 
variables is implicit. In most casts of interest such 
a repctitian naturaIly arises--we can introduce it 
artificially into cq. I by tatakrng 1 to be a mapping 
from S to 1 ia V, i.t. h 3 1 far all s E S. Then cq. 1 
may be written: 

with implicit '"summation". 

23 beterminirric States 

These sxprcss the conditions that arise when a 
system's behariour is eornplctely defined and 
dcttrminate. The automaton r tpmtnt ing i t  is 
always in a wclldehntd, "sharp"', state. We can 
express this: for cach state. it is true or false that thc 
automaton is in the state and the automaton is in 
precisely one state. A suitable truth set is binary, 
Y = 10, I ) ,  with Q being arithmetic +, and the 
nomalization as in Eq. (I). This necessitates only 
one state being mapped onto 1 ,  and hence we could 
express the normalization as. '"the inverse image of 
1 under d contains just one element." 

One note in passing that we shall discuss Further 
in scction 2.9 is lthat it is essential to take e for a 
dcterrninistic automaton to be arithmetic + and 
not logical OR (perhaps a mare obvious choice). 
There is  no equivalent to the normalization of 
Eq. (1) if e is taken as OR and hence no convcnicnt 
way of expressing that only one state is possible. 

These express the conditions that arise whtn a 
system's behaviour is a Markov precess whose 
behaviour is constrained by well-dtdincd probabiIi- 
tits. The probability of the automaton representing 
i t  k i n g  in a particular state is then always wcll- 
defined. That is, for each state, the probability that 
the automaton is in the state is defined and the 
automaton is in prtcisdy one state {the probabili- 
ties ovcr all states sum to one and the conditional 
probabilities of the automaton king in one state 
given that it is in another are all zero). A suitable 
truth st1  is a closed interval of reals, V = 10. I] 
say, with.@ being arithmetic +, and the normaliza- 
tion as in Eq. (1). 

2.5 Fuzzy Sfares 

Zadeh's conccpts of fuzzy logici6 and f u q  
automata" rcpmcnt an attempt to provide a 
formal basis for a mlculuo of approximate reason- 
ing.L7m1g." Formally f u a y  logics in their basic 
forms arc closcEy related to the various classical 
multi-valued loginzo of Lukaitwicz, Dients, 
Gadel, etc. However Zadeh has contributed new 
and p m t i a l l y  interprttablc semantics that makes 
the application of thrsc logics attractive in systems 
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maton actually being in a single slate, will be called 
sharp. 

The conventional generalizations of deterministic 
automaton to probabilistic, fuzzy, and non-deter­
ministic automata 8rc examples of allowing certain 
forms of hyperstate. In the following sub-sections 
we shall first consider a common notation for each 
of these forms and then analyse in detail the rela­
tionships between them. 

2.2 V-sets and Normalization 

The conventional forms of hyperstate can all be 
represented as mappings from the set of states, S, 
to a truth-set, V, b: S - V. We shall adopt in the 
paper a notation for mappings of states that avoids 
parentheses and subscripts since both often 
obscure the essential simplicity of automaton 
operations. 0 will be treated as a unary operator 
binding on the right so that we may write os for 
the image in V of .r E S. Goguen l 

S calls a mapping 
such as lJ a V-set with S as carrier. 

For the purposes of describing automata states 
we also require a normalization condition 
expressing tbat the automaton is actually 
in one and only one state. We shall later take 
V to be a semiring with binary operations, 
tB (we do not use .1 +" because it can be confused 
with arithmetic +) which is associative and com­
mutative, and 0 which is associative, often com­
mutative, and distributes over tB. Both tB and 0 

will be regarded as infix operators mapping 
V x V - V such that 0 takes precedence over 0 

which itself takes precedence over tB, It is con­
venient to express the normalization condition in 
terms of the formal cxpression, EB .. ,sOs, meaning 
the result of operating ovcr the entire co-domain of 
!J in the truth-set with e (Le. "summation" if tB is 
actually + -we assume such an operation is well­
defined if S should be infinite). By suitable choice 
of Vand $ we will show that the normalization for 
all four cases to be considered may be taken to be : 

(1) 

where I is a "zero" in V for 0. 

As a further aid to brevity in notation we shall 
adopt a convention, similar to that of the tensor 
calculus, that summation over repeated dummy 
variables is implicit. In most cases of interest such 
a repetition naturally arises-we can introduce it 
artificially into eq. I by taking). to be a mapping 
from S to I in V, i.e . ..u = 1 for ails E S. Then eq. 1 
may be written: 

..ucos = I (2) 

with implicit "summation". 

2.3 Deterministic States 

These express the conditions that arise when a 
system's behaviour is completely defined and 
determinate. The automaton representing it is 
always in a well-defined, "sharp", state. We can 
express this: for each state, it is true or false that the 
automaton is in the state and the automaton is in 
precisely one state. A suitable truth set is binary, 
V == {D, t}, with e being arithmetic +, and the 
normalization as in Eq. (I). This necessitates only 
one state being mapped onto I, and hence we could 
express the normalization as, "the inverse image of 
1 under {) contains just one element." 

One note in passing that we shall discuss further 
in section 2.9 is that it is essential to take e for a 
deterministic automaton to be arithmetic + and 
not logical OR (perhaps a more obvious choice). 
There is no equivalent to the normalization of 
Eq. (1) if e is taken as OR and hence no convenient 
way of expressing that only one state is possible. 

2.4 Prohahilistic Stares 

These express the conditions that arise when a 
system's behaviour is a Markov process whose 
behaviour is constrained by well·defined probabili­
ties. The probability of the automaton representing 
it being in a particular state is then always well­
defined. That is, for each state, the probability that ' 
the automaton is in the state is defined and the 
automaton is in precisely one state (the probabiU­
ties over all states sum to one and the conditional 
probabilities of the automaton being in one state 
given tbat it is in another are all zero). A suitable 
truth set is a closed interval of reals, V;s [0, I] 
say, with -s beiog arithmetic +, and the normaliza­
tion as in Eq. (1). 

2.5 Fuzzy Statu 

Zadeh's concepts of fuzzy 10gic:16 aDd fuzzy 
automatall represent an attempt to provide a 
formal basis for a calculus of approximate reason­
ing.17 , 11, 19 Formally fuzzy logics in their basic 
forms arc closely related to the various classical 
multi-valued logics lO of Lukasiewicz, Dienes, 
GOdel, etc. However Zadeh has contributed new 
and practical.ly interpretable semantics that makes 
the application of these logics attractive in systems 
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cngincering, for cxample, in pattern r~cognition,~' 
taxonomic c l~s te t ing ,~  process conltr01,'~ robot 
planning,'" and marry other applieations." 

Thus one view of thc concept of a "fuzzy" state 
is that it expresses the form of hyptrstatt that may 
arise when a system's behaviour is being described 
by a proccss of approximate rezoning. Other 
interpretations are possible and we shaIl adopt a 
formal viewpoint in this paper, k ing concerned 
only with the consistency of the notion of a fuzzy 
statt with that of a statc itself. Formally, for a 
fuzzy state the degree of membership of each 
particular state of the automaton to king the 
actual state is defined. If we take the usual fuzzy 
logic system with the truth set being the dosed 
interval of rtats and @ bcing a MAX operator, 
then V = [O, 11 and a@b = MAX(a, b). 

2.5.1 Normalizarion offuzzy states. The normal- 
ization of fuzzy state sets to express the condition 
that the automaton is actually in precisely one state 
requires special attention. The published semantics 
of fuzty automata are unclear on this point. Wee 
and FuZ6 suggest that if a state'has a degrcc of 
membership of unity then the automaton is 
dehnitely in the associated statc. However, the 
converse is not true and it is possible for the rules 
of fuzzy logic t o  generate a situation in which the 
degrees of membership of all states arc zero except 
one which is nor unity. This is so even if the total 
degree of membership is "normalized" as suggested 
in Ref. 26 in the same way as a stochastic auto- 
maton (arithmetic sum of degrees of mcmbership 
baing unity). It also leaves optn the meaning of two 
distinct states each having a degree of membtrship 
Function of unity-an important rase since it 
corresponds to the classical nondeterministic 
automaton. 

It seems better to place the emphasis on the 
degree of membership of a state king zero as 
implying that aht automaton is nor in the associ- 
ated state. With the usual fuzy  logic definitions d 
Y and e given in section 2.5, our normalization 
condition of Eq. (1) requires only that at least one 
statt has a degree of membership of unity. This 
condition is consistent with the definition of @ in 
fupy logic, whcrcas the proposed "normaliza- 
tion'' of Ref. .  26 introduces arithmetic +, an 
optrator outside fuzzy logic. Neither normdiza- 
tion is consistent with a d e w  of membership of 
unity implying that the automaton is definitely in 
the associated state, and his  requires an alternative 
definition. 

A similar problem ar ises  with nondeterministic 
automata and is clearly a semantic one to h 
rcsolved in actuaI applications. The formal normal- 
ization condition proposcd here retains consistency 
between fuzzy automata and the othen, We would 
propose tbc intcrprttation that a fuzzy automaton 
is definifeIy in a state if the truth values of all the 
other states are zero. The normafization of Eq. ( I )  
then implies that the truth value of the remaining 
state is unity-the converse is not true. 

2.6 Non-det erministic States 

Thcst might mort positively be called "possibil- 
istic" since they express the conditions that arise 
when a system's khaviour is such that only the 
possibility and impossibility of its being in a given 
state can be discriminated. That is, for each state 
either it is possible, or impossible, that the auto- 
maton is in that state and the automaton is in 
precisely one statc (at least one state is possible, 
and if  only one state is possible than the auto- 
maton is in that state). A suitable truth set is 
binary, V = {O, 11, with @ being Boolean OR 
which also corresponds to the MAX opcration 
over this truth set. The normalization of Eq. ( 1 )  
implies that the inverse Image of 1 under S contains 
or least onc element (as it also docs for fuzzy slates). 

2.7 From States to Transitions 

Havifig given appropriate forms for the hygrstates 
of dctenninistic, probabilistic, fuzzy, and non- 
deterministic automata, we shail next examine the 
forms of the statt transitions in these cases, defining 
appropriate next-state-functions, NSFs. For the 
momcat we shall consider only the NSF comes- 
ponding to a particular input, or hyptrinput, to thc 
automaton. A full defiaition will involve a fayiIy 
of such NSFs. In this section also we shdl take it 
for granted that the nature of transitions can be 
expressed in terms of the same truth set as that for 
the states themselves. For example, a "stochastic 
automaton" is one with stmhastic states and 
stwbastic state transitions. We can express the 
NSF as a function, a: S x  S + V, mapping a pair 
of states into the truth sct-which reprcscnts the 
truth value of the transition from oac state to the 
other. Again, for notational convenie~ce, a will be 
rcgardcd .as an in6x operator taking p d e n c c  
over W, o and 6, such that, pus, is the value in V af 
the transition from state p to state s-note that the 
operation cs is not commutative in general, 
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engineering, for example, in pattern recognition, 11 

taxonomic clustering, 2 2 process control,23 robot 
planning, 24 and many other applications. 2 5 

Thus one view of the concept of a "fuzzy" state 
is that it expresses the fonn of hyperstate that may 
arise when a system's behaviour is being described 
by a prOCeSS of approx.imate reaSoning. Other 
interpretations are possible and we shall adopt a 
formal viewpoint in this paper, being concerned 
only with the consistency of the notion of a fuzzy 
state with that of a state itself. Formally, for a 
fuzzy state the degree of membership of each 
particular state of the automaton to being the 
actual state is defined. If we take the usual fuzzy 
logic system with the truth set being the closed 
interval of reals and 9 being a MAX operator, 
then V ~ [0, I] and a fllb = MAX(a, b). 

2.5.1 Normalization of fuzzy states. The normal­
ization of fuzzy state sets to express the condition 
that the automaton is actually in precisely one state 
requires special attention. The published semantics 
of fuzzy automata are unclear OD this point. Wee 
and Fu U suggest that if a state ' has a degree of 
membership of unity then the automaton is 
definitely in the associated stale. However, the 
converse is not true and it is possible for the rules 
of fuzzy logic to generate a situation in which the 
degrees of membership of all states are zero except 
one which is not unity. This is so even if the total 
degree of membership is "normalized" as suggested 
in Ref. 26 in the same way as a stochastic auto­
maton (arithmetic sum of degrees of membership 
b:!ing unity). It also leaves open the meaning of two 
distinct states each having a degree of membership 
function of unity-an important case since it 
corresponds to the classical non-determioistic 
automaton. 

It seems better to place the emphasis on the 
degree of membership of a state being zero as 
implying that the automaton is not in the associ­
ated state. With the usual fuzzy logic definitions of 
V and ~ given in section 2.5, our normalization 
condition of Eq. (I) requires only that at least one 
state has a degree of membership of unity. This 
condition is consistent with the definition of III in 
fuzzy logic, whereas the proposed "normaliza­
tioo" of Ref. ' 26 iotroduces arithmetic +, an 
operaior outside fuzzy logic. Neither normaliza~ 
tion is consistent with a degree of membership of 
unity implying that the automaton is definitely in 
the associated state, and this requires an alternative 
definition. 

A similar problem arises with non-deterministic 
automata and is clearly a semantic one to be 
resolved in actual applications. The formal normal­
ization condition proposed here retains consistency 
between fuzzy automata and the others. We would 
propose tbe interpretation that a fuzzy automaton 
is definitely in a state if the truth values of all the 
other states are zero. The normalization of Eq. (1) 
then implies that the truth value of the remaining 
state is unity-the converse is not true. 

2.6 Non-deterministic States 

These might more positively be called "possibil­
istic" since they express the conditions that arise 
when a system's behaviour is such that only the 
possibility and impossibility of its being in a given 
state can be discriminated. That is, for each state 
either it is possible, or impossible, that the auto­
maton is in that slale and the automaton is in 
precisely one state (at least one state is possible, 
and if only one state is possible than the auto­
maton is in that state). A suitable truth set is 
binary, V == {O, I}, with ID being Soolean OR 
which also corresponds to the MAX operation 
over this truth set. The normalization of Eq. (1) 
implies that the inverse image of I under (j contains 
at least one element (as it also does for fuzzy states). 

2.7 From States to Transitions 

Having given appropriate fonns for the hyperstates 
of deterministic, probabilistic, fuzzy, and non­
deterministic automata, we shall next examine the 
forms of the state transitions in these cases, defining 
appropriate next-state-functions, NSFs. For the 
moment we shall consider only the NSF corres­
ponding to a particular input, or byperinput, to the 
automaton. A full definition will involve a family 
of such NSFs. In this section also we shall take it 
for granted that the nature of transitio~s can be 
expressed in terms of the same truth set as that for 
the states themselves. For example, a "stochastic 
automaton" is one with stocbastic states and 
stochastic state transitions. We can express tbe 
NSF as a function, (f: S x S .... V, mapping a pair 
of states into the truth set-which represents the 
truth value of the transition from one state to the 
other. Again, for notational convenience, (1 will be 
regarded ·as an infu. operator taking precedence 
over e, 0 and fJ, such that, P(1S, is the value in Vof 
the transition from state p to state s-note that the 
operatio'n (1 is not commutative in general. 
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The n6rmaItation of a for the casts considered 
may be expressed as : 

for all p E S (with implicit summation over all 
s~ S). And, if 6' is the new V-set function deter- 
mining the hyptrsrate after a transition, we have: 

As a matter of notation we can write this as an 
quation for 6' : 

leaving both 6' and o requiring their right-hand 
operands. 

Note that, by the commutativity of e and the 
distributivity of o, it may be shown that Eq. (3) 
implies that the operation of Eq. (4) preserves the 
normalization OF Eq. (2). IFhods = I ,  then : 

Equations (23, (3) and (43 arc a common formal 
expression for the normalization of hyperstates, 
the normalization of the NSF, and the transition of 
hyp~rstates in all four gtneralizations of automata 
so far discussed. The truth-set V, and the operator, 
e, have already been defined for each case. It 
m a i n s  only to define the operator, o, as: arithme- 
tic x (multiplication) when @ is arithmetic + 
(dtterminjstic and stochastic automata); and 
arithmetic MIN (least of two operands) when @ is 
MAX (fuzzy and nondeterministic automata). Note 
that MGY and MAX may bc regarded as Boolean 
AND and OR in the non-deterministic case, and as 
generalized mulaivalued logic AND and OR in tht 
fuzzy case. 

Before proceeding it would probably be useful 
to illustrate the relation lxtwetn the notation 
adopted here and the conventional wectorjmatrix 
notation for automata. Suppose that S contains n 
states labelled s, . . . sm, and that e and o are 
written as addition and multiplication, resptctively. 
Let : 

and: 

s p t  = Prr (7) 

Then Eq. (2) komcs:  

and Eq. (4) becomes : 

2.8 Comparisons ond Contrasls 

The previous sections have btcn phrased to bring 
out the simi rarities and differences between the four 
structures considered. Note that the normaliza- 
tion condition is uniformly that OF Eq. 2, and the 
truth sets are either the entire interval, [O, I ] ,  or its , 

boundary points. {O, I ), whilst the transitions are 
uniformly represented by Eqs. (3) and (4), A table 
of operators against truth sets (Table I) shows that 
the fout cases analyscd encompass a complete set of 
variations for thew truth sets and operators. This is 
intuitively satisfying because it gives a closutc over 
those automata which have been most extensively 
studied in 'the past. It is an answer in this context to 
the question or whether we can continually invent 
new forms of automaton. 

TABLE I 
Truth sets and operalors for automata 

Truth Sct 
IQ, 1 1 [Q* 11 

+ Dttmninislic Probabilis~ic x 
@ 0 

011 NoodctmninLtic Funy AND 

2.8.1 Fuzzy ondstachestic autltomara. The relation- 
ship expressed in Table I between fuzq, aon- 
deterministic and deterministic automata, and 
between s~achastic and deterministic automata, arc 
well known. However, that between stochastic and 
fuzzy automata is less obvious and it is worth 
discussing whether this is just a mahcmatical 
formality or whether it has a stmantic content. 
Clearly the common use of the internal [O, 11 
corresponds to quite different interpretations of the 
values within it-a 'Udegree of mmkrshipD' 
appears as a less precise concept than a '"roba- 
bility". Equally the operators, + and x , appear 
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The normalization of a for the cases considered 
may be expressed as: 

puso).s = 1 (3) 

for all PES (with implicit summation over all 
sE S). And, if 0' is the new V-set function deter­
mining the hyperstate after a transition, we have: 

o's = opcpas (4) 

As a matter of notation we can write this as an 
equation for //: 

0' = opopa (5) 

leaving both 0' and Cl requiring their right-hand 
operands. 

Note that, by the commutativity of e and the 
distributivity of 0 , it may be shown that Eq. (3) 
implies that the operation of Eq. (4) preserves the 
normalization of Eq. (2). If ).sc {)s = I J then: 

).s0 0's = op0pas J As 

= op0(paso As) 

= OP'7) ).P 

= {)s0 As = I. 

Equations (2), (3) and (4) are a common formal 
expression for the normalization of hyperstates, 
the normalization of the NSF, and the transition of 
hyperstates in all four generalizations of automata 
so far discussed. The truth-set V, and the operator, 
e, have already been defined for each case. It 
remains only to define the operator, 0 , as: arithme­
lie x (multiplication) when $ is arithmetic + 
(deterministic and stochastic automata); and 
arithmetic MIN (least of two operands) when $ is 
MAX (fuzzy and non-deterministic automata). Note 
that MIN and MAX may be regarded as Boolean 
AND and OR in the non-deterministic case, and as 
gener;;.lized multivalued logic AND and OR in the 
fuzzy case. 

Before proceeding it would probably be useful 
to illustrate the relation between the notation 
adopted here and the conventional vector/matrix 
notation for automata. Suppose that S contains n 
states labelled SI ••• s., and that m and 0 are 
written as addition and multiplication, respectively. 
Let: 

(6) 

and: 

Sf'S, = PI, (7) 

Then Eq. (2) becomes: 

Eq. (3) becomes: 

t P I} = I 
1"1 

and Eq. (4) becomes: 

2.8 Comparisons and COnlrasls 

(8) 

(9) 

(ID) 

The previous sections have been phrased to bring 
out the simi larities and differences between the four 
structures considered. Note that the normaliza­
tion condition is un ifonnly that of Eq. 2, and the 
truth sets are either the entire interval, [0, I ], or its 
boundary points. {O, I}, whilst the transitions are 
uniformly represented by Eqs. (3) and (4). A table 
of operators against truth sets (Table I) shows that 
the four cases analysed encompass a complete set of 
variations for these truth sets and operators. This is 
intuitively satisfying because it gives a closure over 
those automata which have been most extensively 
studied in the past. It is an answer in tbis context to 
tbe question of whether we can continually invent 
new forms of automaton. 

TABLE I 
Truth sets and operators for automata 

Truth Set 
(0,1 } (0. I] 

+ Detenninislic Probabilislic x 

OR Nocdetennini..5tic Fuzzy AND 
o 

2.8.1 Fuzzy and stochastic automata. The relation­
ship expressed in Table I between fuzzy, non­
deterministic and deterministic automata, and 
between stochastic and deterministic automata, are 
well known. However, that between stochastic and 
fuzzy automata is less obvious and it is worth 
discussing whether this is just a mathematical 
formalit'y or whether it has a semantic content. 
Clearly the common use of the interval [0, 1] 
corresponds to quite different interpretations of the 
values within it-a "degree of membership" 
appears as a less precise concept than a "proba­
bility". Equally the operators, + and x, appear 
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little related to MAX and MIN. However, the 
following argument demonstrates a closer COf­

respondence tban might be expettcd. 
Consider two eyenlS. A and D, with respective 

probabilities of occurrence, PA and P." If the twO 
events are statistically independent then the 
probabilities of their conjunction and disjunction 
are: 

P(A " B)=PA"Xp. (1 1) 

P(A v B) = P'( +P,-PA xp. (12) 

Suppose. however. that A and B are not indepen­
dent events but that onc implies the other, A - S, 
sa)'. Thenwehavc: 

P(A " 8) = PA 

P(A v 8) - P. 

(13) 

(14) 

However, the direction of implication also gives us: 

P(A) :i P(D) (15) 

so that Eqs. (\3) and (14) may be rc-written. 

P(A A D) - MJN(p., p,) (16) 

P(A v D) ~ MAX(p.,p,) (17) 

Conversely. if the "fuzzy logic" conditions of 
Eqs. ( 16) and (11) hold for two probabilistic events, 
then we have : 

P(A A D) _ MIN(p(A A 8) 

+P(A A B),P(A A D)+p(A A 8» 
. ( 18) 

which implies that either P(A 1\ B) - 0 or P(A 1\ 

.8) "" O,i.e. eitherA _ BorB - A. 
Thus we see that the applicability of the fuzzy 

logic operations of Eqs. (16) and (11) to detennin­
ing the probabilities of conjunction and disjunction 
of two probabilistic variables is equivalent to their 
being a logical relations.hip of implication between 
the variables. In principle therefore tbe fuzzy logic 
connectives may be regarded as those of probabil­
istic logic io whicb all variables are connected by a 
chain of implication. This is the converse condition 
to that generally assumed in application of pro~ 
ability theory where one attempts to make variables 
statistically independent. The "chain" concept is 
intuitively significant-the l'¥1IN operation in fuzzy 
logic expressing that a chain is as weak as its 
weakest Link-tbe MAX operation expressing that 
alternative cbain~ in parallel arc as strong as the 
strODgest. 

These relationships between probabilistic and 
fuzzy logics indicate that Table I ex.presses more 
than mathematical fonna lism. Clearly the relation­
ship demonstrated between fuzzy and probabilistic 
logics should also extend to the richer semantics 
developed by Zadeh."· I

'.
19 It would also be 

interesting for application studies to compare 
probabilistic and fuzzy logics in their relative 
efficacies (or particular situations and relate this to 
the presence or absence of implications between the 
variables involved. Gainesu has done this for the 
control studies of Mamdani and Assilian,2l 
showing that in this particular case both logics lead 
to the same control policy. This is clearly not neces­
sarily true in general but might be almost universal 
in practical situations where the algorithms have to 
be robust against errors and imprecision in the data, 
and hence also to r~asonabll! pnturlxJrions in. the 
op~rators on whi~h thty (JI'e bQStd. 

1.9 The Logics 0/ Convtntionol Automata 

For fuzzy and non-deterministic automata the 
operators ~ and :. are logical OR and AND, in 
two-valued or multi-valued logics respectively. It 
might be expected that the same would be true for 
detenniDistic automata since the truth set is two­
valued . However, it has already been noted in 
section 2.3 that e must be arithmetic + in this case 
if the normalization of deterministic hyperstates is 
to be expressed in terms of it. Hence, in terms of 
operators, deterministic automata are more closely 
related to probabilistic automata than to either non­
deterministic or (uzzy automata. 

However, there is also a $Cnse in which e and 0 

for deterministic and probabilistic automata may 
be regarded as logical operators. Rescber (Ref. 20, 
section 21) has given a set of postulates for what he 
calls a probability logic (Pl) over a domain of 
statements. The logic is defined in terms of a 
valuatioD. over the lattice of conjunction and dis­
junction of statements that assigns some real value, 
peA), to every member, A. of the universe of 
statements. This assignment has to satisfy the 
postulates :-

(PI) 0 :i! peA), for any stalment, A. 

(Pl) P(A v A) - I 

(P3)P(A v B) _ P(A)+P{B), provided A and B 
I1re mUlUally exclusive 

(P4) P(A) ... P(B), if A is logically equivalent to B 
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(PSJI P(A A B) = P(A) +P(B) - P(A v B), defin- 
ing conjunction 

(P6) P(A a B) = P(A A B), defining impIication 

foundation for all fout types of automata, with 
auxiliary postulates leading to the particular cases. 
This foundational rdt for PL will be further 
demonstratmi in the following section. 

(PI)IP(A e 8) = P(A 7 B A B 3 A), defining 
equivalence 

3. POSSIBLE AUTOMATA 
These arc the normal basic requirements for e 

system of probability, but they may also be regarded 
as a set of postuIatcs for an infinite-valued logic. 
The logic i s  not truth-functional, but if the value 1 
only is designated then the truth tables for the 
operations of negation, conjunction and disjunc- 
tion are those of the classical propositional calcu- 
lus (PC), Conversely, the axioms that define PC 
may k shown to be tautologies or probability logic 
(Ref. 20, p. 187). Hence the system coincides 
completely with PC in its tautologies. 

In t e r n s  of our ~revious  discussion of automata 
the operator e is to combine the trurh-values 
of the automaton king i n  different stales, or to 
combine the truth vnluts of trajcctorits ta the same 
state, both of which represent the disjunction of  
mutually exclusive cvcnlts. Hencc P3 of PL applies 
and is arithmetic plus. The operator o represents 
a normalimtion-preserving transformation of 
hypcrstaxcs and must be arithmetic x if  8 is 
arithmetic +. However, i t  is consistent with P5 for 
the logical conjunction of ccnaia statements to 
havt n valuation which is the product of the valu- 
ations oh each statement. This condition represents 
sratis~iml independence between the statements, 

Thus. for all fout casts the operatom @ and 0 may 
bt regarded as logical operatan of disjunction and 
conjunction respcctivcly. For non-dttemjnistic 
automata the two-valued propositional calculus is 
appropriate. For fuzzy automata a multi-valued 
gcnesalizettion of PC is appropriate, e.g. virtually 
any of thosc described in  Ref. 20 since the MAX 
and MZN operators are the most common for 
disjunction and conjunction. For deterministic and 
probabilistic automata s probability logic is 
appropriate in which o plays the role of conjunc- 
tion for statistically independent statements. 

We can make the common basis for automata 
tvcn stronger now by re-interp~ting the arguments 
of section 2.8.1 in terns of the postulates of PL. 
Essentially what wc have shown in section 2.8.1 is 
that the opcrations on truth-values for disjunction 
and conjunction in a PL become MAX and MN 
rcspectivcZy i f  a relation of mutual implication 
bt~ween  statements is assumed (rather than stat- 
istical indepcndtnce). Hence PL is a gmeral 

3.1 The Needfor Further Automaton Srrucfures 

Although -ion 2 gives a satisfying completeness 
rtsult for the conventional spmrurn of automata, 
it in no way implies the sufficiency of these struc- 
tures to represent all possible casts of interest. That 
they are in Fact inadequate is k s t  seen by example, 
and we shall give one which is itself of particular 
interest in the eontcxt of calculi of possibility and 
probability, and of multi-valued logics. 

In our studies of system stability and control we 
havt been very concerned to embody in our formu- 
lation the distinction between possible events that 
may not occur and possible events that are gvar- 
anreed to occur sooner or later. The former events 
correspond to problems that may arise and havt to 
k avoided. They rctate to regions of states which 
arc reachable i n  terms of stability analysis but nor 
reachable in terns or contro1. The second type of 
possible tvent, howtvcr, is responsive to fedback 
control since i f  the situation is conrinually rc- 
mated in which it may occur then it eventually will 
occur. 

Note that probability theory docs not provide an 
txplicatum of the first typc of possible event. If for 
the purposes of analsing an uncertain system we 
assign an unctnain evtnt a non-zero probability 
then we imply that not only may it mcur but abo, 
in a scqucncc of occurrences each of which may be 
that event, it eventually will occur with a probability 
arbitrarily near one. Thc notional assignment of a 
definite probability 10 an tvent also fails to provide 
an adequate expljcatum of the scccrt~d type of 
possible evtnt h u s e  it has the stronger implica- 
tion that the relative frequency of such cvtnts in a 
sequence will tend to converge to the given prob 
ability with increasing length orsequence. 

Either or both of thcse connotations which 
probability bas over possibility may k too strong 
in practical situations where the concepts of 
probability theory m k i n g  used lo  express the 
effects of uncertain bthaviour. For example, we 
are often faced with situalions where an event, E 
may occur, but there is no guarantee h a t  E 
actually will occur, no matter how long we wait. If 
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(PS) P(A 1\ B) c:: P(A)+P(B)-P(A v B). defin­
ing conjunction 

(P6) peA :::l B) = P(A 1\ B), defining implication 

(P7) P(A Si! B) = P(A :::l B 1\ B :::l A), defining 
equivalence 

These are the normal basic requirements for a 
system of probability, but they may also be regarded 
as a set of postulates for an infinite-valued logic. 
The logic is not truth-functional, but if the value I 
only is designated then the truth tables for the 
operations of negation, conjunction and disjunc­
tion are those of the classical propositional calcu­
lus (PC). Conversely, the axioms that define PC 
may be shown to be tautologies of probability logic 
(Ref. 20, p. 187). Hence the system coincides 
completely with PC in its tautologies. 

In terms of our previous discussion of automata 
the operator ~ is used to combine the truth-values 
of the automaton being in different states, or to 
combine the truth values of trajectories to the same 
state, both of which represent the disjunction of 
mutually exclusive events. Hence P3 of PL applies 
and ~ is arithmetic plus. The operator 0 represents 
a normalization-preserving transformation of 
hyperstates and must be arithmetic x if e is 
arithmetic +. However, it is consistent with PS for 
the logical conjunction of certain statements to 
have a valuation which is the product of the valu­
ations of each statement. This condition represents 
statistical independence between the statements. 

Thus, for aJI four cases the operators ID and 0 may 
be regarded as logical operators of disjunction and 
conjunction respectively. For non-detenninistic 
automata the two-valued propositional calculus is 
appropriate. For fuzzy automata a multi-valued 
generalization of PC is appropriate, c.g. virtually 
any of those described in Ref. 20 since the MAX 
and ~ operators are the most common for 
disjunction and conjuoction. For deterministic and 
probabilistic automata a probability logic is 
appropriate in which 0 plays the role of conjunc­
tion for statistically independent statements. 

We can make the common basis for automata 
even stronger now by re-interpreting the arguments 
of section 2.8.1 in terms of the postulates of PLo 
Essentially what we have shown in section 2.8.1 is 
that the 'operations on truth-values for disjunction 
and conjunction in a PL become MAX and MIN 
respectively if a relation of mutual implication 
between statements is assumed (rather than stat­
istical independence). Hence PL is a general 

foundation for all four types of automata. with 
auxiliary postulates leading to the particular cases. 
This foundational role for PL will be further 
demonstrated in the following section. 

3. POSSIBLE AUTOMATA 

3.1 The Need/or Furthu Automaton Structures 

Although section 2 gives a satisfying completeness 
result for the conventional spectrum of automata, 
it in no way implies the sufficiency of these struc­
tures to represent all possible cases of interest. That 
they are in fact inadequate is best seen by example. 
and we shall give one which is itself of particular 
interest in the context of calculi of possibility and 
probability. and of multi-valued logics. 

In our studies of system stability and control we 
have been very concerned to embody in our fonnu­
lation the distinction between possible events that 
may nor occur and possible events that are guar­
anteed to occur sooner or later. The former events 
correspond to problems that may arise and have to 
be avoided. They relate to regions of states which 
are reachable in terms of stability analysis but not 
reachable in terms of control. The second type of 
possible event, however. is responsive to feedback 
control since if the situation is continuaJly re­
created in which it may occur then it eventually will 
occur. 

Note that probability theory does not provide an 
explicatum of the first type of possible event. If for 
the purposes of analysing an uncertain system we 
assign an uncertain event a non-uro probability 
then we imply that not only may it occur but also, 
in a sequence of occurrences each of which may be 
that event. it eventually will occur with a probability 
arbitrarily near one. The notional assignment of a 
definite probability to an event also fails to provide 
an adequate explicatum of the secood type of 
possible event because it has the stronger implica­
tion that the relative frequency of such events in a 
sequence will tend to converge to the given prob­
ability with increasing length of sequence. 

Either or both of these connotations which 
probability has over possibility may be too strong 
in practical situations where the concepts of 
probability th~ory are being used to express the 
effects of uncertain behaviour. For example, we 
are often faced with situations where an event. E 
may occur, . but there is no guarantee that E 
actually will occur, 00 matter how long we wait. If 
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we ascribt some arbitrary probability to E then we 
certainly express that it is a possible event. How- 
ever we arc in a position to derive totally unjustified 
results baed on cht certainty of some eventual 
oecumnce of E, or mtaningttss nurncric results 
b u d  on the actual *'probabilltyW of occurrence of 
E. 

The danger of deriving profound rcsults that 
have no justification other than an unwarranrcd 
strength in the thtory is a real one. For example, 
G a ~ n e s ' ~ ' ~ ~  has shown that a two-state stochastic 
auromaton can solve a class of control problems 
othtrwisc rquiring a rceunive automatonJo and 
nol soluble by any finite a u t o m a t ~ n ' ~ * ' ~ .  This 
significant result is dependent on a source of 
uncertain bchaviour that is properly probabilistic, 
but whose probability docs not have to be known, 
It cannot be derived if the bshaviour is merdy 
possibilistic. There is no way, however, of prt- 
venting the consequences of this result appearing 
in the analysis o l  a system in which unccrtaineies 
have been represented by probabilities rather than 
possibilities. 

A similar problem arises in thc practical applies- 
tion OF linear systems theory. There arc many 
muIts which may be derived from the assumption 
of lintatity (such as the complete extension of 
knowidge of Id bthaviour to that of global 
behariour) which are fdst in mast practical systems. 
The engnter resolves these problems in practiee 
through a set of "rules-of-thumb" b a d  on 
commonsense and txperiencc which constrain the ' 

dcduc~ons he is prepartd to mume valid. Such a 
resolution is however extnmely d i f f i d t  to imple- 
ment in an automated, or computer-aided, design 
system, and k o m t s  increasingly difficult to apply 
as the system involved k o m c s  more complex. 

I n  thc following scction we analyse these differ- 
enlt f o m  of uncertainty about system behaviow 
and then demonstrate that whilst any one of them 
may be encornpad by the automaton structures 
analyscd in section 2 a combination of d i f f e ~ n t  
foms of unctminty requires a more gncral 
structure than is available in this spFctrum of 
nutomata. 

3,2 Possibla, E~enml  and Probable Events 

(i) Possible Event E is pasjib!-no reliance may be 
p l n d  upon the occurrence or the non-wcumnce 
of E. This cormponds to an interpretation of E as 
an went who% negative consequtnm must be 
takeen into nccouat, but whose positive consc- 

qucnces cannot bc relied upon. The modal owrator 
of "possibility", M, in alcthic modal logicS'm" 
represents this concept, but conventional prob 
ability theory provides no explicaturn for it. 

(ii) Eventual Event E will eventually occur in that 
it is frequent in the sense or infinite sequences, i,e. 
in a series of events E(i), for any n, these exists 
m n, such that E(m) = E. This cornponds to 
the interpretation of E as an event whose eventual 
wcurrence may bc rclicd upon, but whose relative 
frequency of murrcnce is not neccssady stable ar 
known. A suitable explicatum in' probability 
theory is that p(E) > 0, the event has n non-zero 
probability oF occurrence (the foundations of 
probabili(y theory in terms df computational 
cornpl:~ity~~~'~ show that any apparent philo- 
sophical distinction between "frequent" events and 
those of "non-zero probability" has no operational 
interpretation). 

(iii) Probable Event E is frequent and its relative 
frcqucncy of oceurrcnc* in a sequence of events 
converges to a definite value, p(E), its probabilizy 
of occurrence. This is thc t y p  of event with which 
we art most used to dealing using the methods of 
probabiIity theory. 

One approach to incorporating these thrte 
forms of uncertainty into a single logic has been 
suggested by Gaints and K o h o ~ t , ' ~  who have 
shown that i t  is possible to take these t h m  types of 
cvtnt and add to them two funhtr types, nnmsary 
and impossible events (always or never occur, 
rcspetively), to f o m  a multi-valued Iogic. Thc 
logic is mixed discfcttcontinuaus since probabIt 
events are stpmscntcd by a number in the stmi- 
open internal (0, I]. This approach is outlined in 
the next section. 

33 A l a g i t  of Possibi[iry, Euenrrralify and 
Probabiliry 

Let us take the truth set, V, to consist of the semi- 
open inttrval. R - (0, 11 and the elements, N, E, 
P, I, whoseinzcrpretation is: 

N-Necessary occurrence-probability equals 
unity. 

E-Eventual cccumace-probability unknown 
but non-zero. 

P-PossibIc-<annot say that it will not occur. 

I -Imposs ib le~nnot  mcur. 

A truth value in R is a known probability oh occur- 
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we ascribe some arbitrary probability to E then we 
certainly express that it is a possible event. How­
ever we are in a position to derive totally unjustified 
results based on the certainlY of some eventual 
occurrence of E, or meaningless numeric results 
bllSed on the actual "probability" of occurrence of 
E. 

The danger of deriving profound results that 
have no justification other than an unwarranted 
strength in the theory is a real one. For example, 
Gaines u . 19 bas shown that a two-state stochastic 
automaton can solve a class of control problems 
otherwise requiring a recursive automaton 30 and 
not soluble by any finite automaton 18. 30. This 
significant result is dependent on a source of 
uncertain behaviour that is properly probabilistic, 
but whose probability does not have to be known. 
It cannot be derived if tbe behaviour is merely 
possibilistic. There is no way, however, of pre­
venting the consequences of this result appearing 
in tbe analysis of a system in which uncertainties 
have been represented by probabilities rather tban 
possibilities. 

A similar problem arises in the practical applica­
tion of linear systems theory. There are many 
results which may be derived from tbe assumption 
of linearity (sucb as the complete extension of 
knowledge of local behaviour to that of global 
behaviour) which are false in most practical systems. 
The engineer resolves these problems in practice 
through a set of "rules-of-thumb" based on 
common sense and experience which constrain the 
deductions he is prepared to assume valid. Sucb a 
resolution is however extremely difficult to imple­
ment in an automated, or computer-aided, design 
system, and becomes increasingly difficult to apply 
as the system involved becomes more complex. 

In the following section we analyse these differ­
ent forms of uncertainty about system behaviour 
and then demonstrate that whilst anyone of them 
may be encompassed by the automaton structures 
analysed in section 2 a combination of different 
forms of uncertainty requires a more general 
structure than is available in this spectrum of 
automata. 

3.2 Possible, EcenlUlll and Probable events 

(i) PosJible Event E is possible-no reliance may be 
placed upOn the occurrence or the non-OCCWTence 
of E. This corresponds to an interpretation of E as 
an event whose negative consequences must be 
taken into account, but whose positive conse-

quences cannot be relied upon. The modal operator 
of "possibility", M, in alethic modal logic'" 32 

represents this concept, but conventional prob­
ability theory provides no explicatum for it. 

(ii) Eventual Event E will eventually occur in that 
it is frequent in the sense of infinite sequences, i.e. 
in a series of events E(i), for any n, there exists 
m > n, such that E(m) = E. This corresponds to 
the interpretation of Eas an event whose eventual 
occurrence may be relied upon, but whose relative 
frequency of occurrence is not necessarily stable or 
known. A suitable explicatum in' probability 
theory is that p(£) > 0, the event has a non-zero 
probability of occurrence (the foundations of 
probability theory in terms of computational 
compl~xity3', J6 show that any apparent philo­
sophical distinction between "frequent" events and 
those of "non-zero probability" has no operational 
interpretation). 

(iii) Probable Event E is frequent and its relative 
frequency of occurrence in a sequence of events 
converges to a definite value, P(E), its probability 
of occurrence. This is the type of event with whjch 
we are most used to dealing using the methods of 
probability theory. 

One approach to incorporating these three 
forms of uncertainty into a single logic has been 
suggested by Gaines and Kohout,3 3 who have 
shown that it is possible to take these three types of 
event aDd add to them two further types, necessary 
and impossible events (always or never occur, 
respectively), to fonn a multi-valued logic. The 
logic is mixed djscrete~ontinuous since probable 
events are represented by a number in the semi­
open interval (0, I). This approach is outlined in 
the next section. 

33 A Logic of Possibility, Evenlualily and 
Probability 

Let us take the trutb set, V, to consist of tbe semi­
open interval, R :'i (0, 11 and the elements, N. E, 
P, I, whose interpretation is: 

N-Necessary occurrence-probability equals 
unity. 

£-Eventual occurrence-probability unknown 
but non-zero. 

P-Possible--cannot say tbat it wiU not occur. 

I - lmpossible-cannot occur. 

A truth value in R is a known probability of occur-
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tcacc which is not zero. We shall say an event is of 
type R if its rrurh value is in R and wi31 write R:p, 
whtrep is its probability, toemphasize this. 
The operator over vcorr~ponds to two differ- 

ent rout- akvieg at the same srate-what can we 
say if we know either x or y is true? A truth table 
for B is given in Table 11. The o opcrator aver V 
cornsponds to a state followed by a transition- 
what can we say if  we know that y follows x. A 
truth table for - is given in Table III. 

TABLE n 
Truth table lor B 

,rcr N N N rV IY 
E N E E  E E  
R : f  N E R : ~ + F '  E R:r' 
P N E E  P P 
I N E R:r P I 

ET N E R x  P I 
E E E E  P S 
R:rO R:rO E : P I 
P S P P  P I 
I I I I  I f 

Consider first the structure with R taken as a 
single logic variable, i.e. V a (N, E, R, P, 0, 
which a l low for all the explicata of uncertainty 
developcd in section 3.2. Note tbaa, without R, the 
tables for a and o arc simply that of a Cvalut 
Post algebra, and hence can be mapped onto a 
l u a y  logic. R, however, &haves anomalously in 
that R e P  = E whereas RoP = P. It has been 
suggested by Brown1* that the Y-set of a f u a y  
loge be taken to be a distributive lattice. However 
the interaction of R and P is inconsistent with e 
and o being lattice operations. This is a concrete 
cxampIc of the need for more gcntral truth sets 
discussed by Goguen,15 

If we now consider the full truth set at first 
specified in which R is actually a semi-opm interval, 
then the logic is now a mixed continuous discrete 
structure which can, howcvcr, still be neatly 
rcprtsentcd in the "truth tables". Such structures 

are both thcorctically inttrtsting and practically 
necessary to obtain rich enough explicata of the 
behaviour of uncertain systems. 

It will bt noted that the diagonals of the two 
tables show thc idtrnpottacy of the elements, and 
the wider significance of this may be raised. 
However, the individual elements of R arc clearly 
not idernpotent in gtneral ( p e p  # p, and p x p  # 
p, in general), and if we consider a variant on E, 
such as G interpreted as "properly probabilistic" 
(unknown probability in the open interval, (0, I)), 
then idempottncy can be s e n  to fail even for a 
discrete element (GsG # C). 

Thus this mul~ivalued logic of possibility and 
probability illusr rates the requircmtnt for auto- 
maton logics beyond those discused in section 2. 
In the following stction we shall consider the 
fundamental constraints upon more general logics. 
However, having introduced the examples o f  this 
section, it is appropriate to briefly surnrnarizt 
further studies of mixed probability, eventuality 
and possibility. 

3.4 The Prablem of Possibility 

The rnultivalucd logic of section 3'3 provides an 
improved account of the various forms of un- 
certainty and their mixtures, false conclusions to be 
drawn about possibilistic or eventualistic events, 
and yet it contains a fuIl account of truly probabil- 
istic events. However, it  suffers from what app+ars 
to be a fundamental defect otall attempts toaccount 
for possibilistic, or non-dcteministic, khaviour in 
terms of a finite-valued logic. I t  is unable to sustain 
certain forms of deduction leading to deterministic 
conclusions abwr nondeterministic behaviout. 

The problem of drawing conclusions about 
possible events is best scta in terms of an example. 
Consider the nondeterministic automaton of 
Figure 1-starting in SO, its future states arc 
indeterminate. Howtver, even if we know only that 
thc transitions ate possible, it is clear that thc state 
S2 will certainly be entered at some time. If we 
b o w  also that thc transitions are eventual then i t  
is also certain that he ultimate state will be S5. If, 
in addition, the transition probabilities arc well- 
defined then we m y  also derive the expected time 
for this sta t t  to be reached. This last conclusion is 
a numeric: resuIt readily reprrsented in probabilistic 
terms, but what of the weaker rtsults? They art not 
in thcmsclvcs quantitative but they do sttm to be 
based on an. underlying quantitative argument- 
when the state will be SZ is uncertain but the "total 
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tence which is not zero. We shall say an event is of 
type R if its truth value is in R and will write R:p, 
where p is its probability, to'emphasize this. 

The e operator over V corresponds to two differ­
ent routes arriving at the same state-what can we 
say if we know either x or y is true? A truth table 
for e is given in Table 1I. The 0 operator over V 
corresponds to a state followed by a transition­
what can we say if we know that y follows x. A 
truth table for - is given in Table Ill. 

e 

N 
E 
R:"-
p 
[ 

0 

N 
E 
R :r' 
P 
I 

N 

N 
N 
N 
N 
N 

N 

N 
E 

TABLE n 
Truth table ror e 

E R:r 

N N 
E E 
£ R :,+r' 
E E 
E R:r 

TABLE m 
Trulh tablc ror 0 

E R:r 

E R :r 
£ E 

R:"- E R :r, 
P P P 
J J I 

P I 

N N 
E E 
£ R :, ' 
P P 
P I 

P I 

P I 
P I 
P I 
P I 
I I 

Consider first the structure witb R taken as a 
single logic variable, i.e. V == {N, E. R, P,!}, 
which allows for all the expiicata of uncertainty 
developed in sectioo 3.2. Note that, without R, the 
tables for e and (;) are simply those of a 4-value 
Post algebra, and hence can be mapped onto a 
fuzzy logic. R, however, behaves anomalously in 
that ReP = E whereas RoP = P. It has been 
suggested by Brown14 that the V-set of a fuzzy 
logic be taken to be a wstributive lattice. However 
the interaction of Rand P is inconsistent with e 
and 0 being lattice operations. Tbjs is a coocrete 
example of tbe need for more gcneral truth sets 
discussed by Goguen. 1 , 

If we now consider the full truth set at first 
specified in wh.ich R is actually a semi-open interval, 
then the logic is now a mixed continuous discrete 
structure wh.icb can, however, still be neatly 
represented in the "truth tables". Such structures 

are both theoretically interesting and practically 
necessary to obtain rich enough explicata of the 
behaviour of uncertain systems. 

It will be noted that the diagonals of the two 
tables show the idempotency of the elements, and 
the wider significance of this may be raised. 
However, the individual elements of R are clearly 
not idempotent in general (p+p #: p, and p xp #: 
p, in general), and if we consider a variant on E, 
such as G interpreted as "properly probabilistic" 
(unknown probability in the open interval, (0, I», 
then idem potency can be seen to fail eVen for a 
discrete element (GaG #: G). 

Thus this multivalued logic of possibility and 
probability illustrates the rcquirement for auto­
maton logics beyond those discussed in section 2. 
In the following section we shall consider the 
fundamental constraints upon more general logics. 
However, having introduced the examples of this 
section, it is appropriate to briefly summarize 
further studies of mixed probability, eventuality 
and possibility. 

3.4 The Problem of PossibililY 

The multivalued logic of section 3.3 provides an 
improved account of the various forms of un­
certainty and their mixtures, false conclusions to be 
drawn about possibilistic or eventuaHstic events, 
and yet it contains a full account of truly probabil­
istic events. However, it suffers from what appears 
to be a fundamental defect of all attempts to account 
for possibilislic, or non-deterministic, behaviour in 
terms of a finite-vaJued logic. It is unable to sustain 
certain forms of deduction leading to deterministic 
conclusions about Don-deterministic behaviour. 

The problem of drawing conclusions about 
possible events is best seen in terms of an example. 
Consider the nondeterministic automaton of 
Figure I- starting in SO, its future states are 
indeterminate. However, even if we know only tbat 
the transitions are possible, it is clear that the state 
S2 will certainly be entered at some time. If we 
know also that the transitions are eventual then it 
is aJso certain tbat the ultimate state will be SS. If, 
in addition, the transition probabilities are well­
defined then we may also derive the expected time 
for this state to be reached. This last conclusion is 
a numeric result readily represented in probabilistic 
terms, but what of the weaker results? They are not 
in themselves quantitative but they do seem to be 
based on an. underlying quantitative argument­
when the state will be S2 is uncertain but the "total 
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uncertainty" about thar state sums to a certainty 
that it will -urn 

The normal reprtsentation of a nondettminktic 
transition by a binary lo@cal variable taking h e  
values 0 (impossible) and 1 (possible) annot k 
used to support this form of resoning. For 
example, Table IV shows the possibility of tach 

FEGURE 1 . State tinsitions of a nondctcnninislic 
nutWMt0n. 

TAELE I V  
Binary fbnn of nondttenninistic h y p n t a t a  

state of b e  automaton of Figure 1 at successive 
dock times. It a n  be stnr that the pattern of 
bhnviour for $2 is identical to that for $3, and yet 
we can stt that S2 must =cur whilst S3 may only 
possibly =cur. Clacrly an cxhaustivt enumeration 
of all possible paths from SO to S5 will show tbat 
S2 is on all of them whilst S3 is not, but such com- 
binatorial starches become difficult when the 
system is complex and contains loops (Itadiag to an 
infinite number of possible paths). 

IF ehe transitions were probabilistic the argument 
could be based on a simple numeric Calculation of 
the total probability of each of the states, S2 and 
S3. What appears to be lacking in the binary 
representntion of pmsiblc transitions is the normal- 
ization possible with probabilities that exprcsscs 
that the automaton is actually in  one, and only one, 
state. Thc aomalization of the columns of Table 1 
is appropriate to a noudeterministic automaton 
( d o n  2.6) in that at least ant of the sates ha the 
value 1, but there is also the auxiliary rule that i f  
only one of the stater ban the value 1 then the 
automaton is definitely in that state. 

It is in the form of this auxiliary rule that the 
weakness of expressing possibility in a finite- 
valued Iagic sttrnr to lie. To find out if the autp 
maton is definitely in a state we have to examine the 
possibi6ties of JI other states and show tbat they 
are zero. This global argument contrasts sharply 
with the lwal reasoning in the probabilistic cast 
that the automaton is definitely in a state b u s e  
the probability of that state is 1. Therc m m s  no  
season, however, why we should not retain this 
"conservation law" so readily expscssed in prob- 
abilities without giving the actual numeric prob 
abilities anything more than a possibilistic intcr- 
pretation, i.c. :- 

(Dl) PW): = 0 E is impossible 

(D2) 0 < pCE) d 1 E is possible 

A calculus of possibility bascd on these definitions 
is quite simply developed and in fact gives non- 
deterministic avtomata the structure of probabilistic 
automata with the weakened semantics that, apart 
from 0 and 1, the values of "probability" have no 
grcatcr signifieanec than h a t  an event is possible. 

A formal proof that a probability logic may be 
used as a proper basis for a logic of possibility bas 
been given by Rescher3' (set Ref. 20, stetion 28.2). 
He introduces rnodatities into the PL of section 2.9 
by the stipulations: 

(PS) Necessity: LA = 1 or 0 according as 
P(A') is, or is not, uniformly I for cvcry 
substitution instance, A', of A.  

(P9) Possibility: MA = 0 or 1 according as 
PIA') is, or is not, uniformly I) for every 
substitution instance, A', of A. 

The asc of the concept of substitution instances is 
ncccssary because the logic is wt itself tmrlz- 
functional. ~csebcr' '  bas demonstrated that tbc 
logic with thtsc modalities is characteristic of 
Lxwis' system S5 of m d  logic" in that its taut* 
logies arc precisely those of S5, and vice v m a .  
Thus, whilst there is nu finite-valued logic that 
rcprcstnrs pmistly the altlhic m d e l  lo@ of 
necessity and possibility, this (iduitc-valued) 
"probability logic" dms so. 

I F  we consider only mutually exclusive evtnts, 
such as an automaton king in one or another of its 
states, then it may be seen from 5 3  thar the logic' 
kornes truth-functirma I. Valuations are then just 
additive ovcr the disjunction 06 events. Hence also 
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uncertainty" about that state sums to a certainty 
that it will occur. 

The nonnal representatioll of a non~terministic 
transition by a binary logical variable taking the 
values 0 (impos.sible) and I (possible) cannot be 
used to support this form of reasoning. For 
example, Table IV shows the posSibility of each 

FIGURE . Slale Ir.l.Milions or a non-delenninistic 
lIulomalon. 

TABLE IV 
Binary fonn of nondetennini~lic hyperslalcs 

Time 0 2 3 4 S 

SO 1 0 0 0 ,0 0 
SI 0 ~ 1 0 0 0 
52 0 1 1 0 0 0 
oS3 0 0 1 1 0 0 
54 0 0 1 1 1 1 
55 0 0 0 1 1 1 

state of the automaton of Figure at successive 
clock times. It can be seen that the pattern of 
behaviour for S2 is identical to that for S3, and yet 
we can see that S2 must occur wh.ilst S3 may only 
possibly occur. Clacrly an ellbaustive enumeration 
of all possible paths from SO to SS will show that 
S2 is on 811 of them whilst S3 is not, but such com­
binatorial searches become difficult when the 
system is complex and contains loops (leading to an 
infinite number of possible paths). 

If the transitions were probabilistic tbe argument 
could be based On a simple numeric calculation of 
the total probability of each of the states, S2 and 
S3. What appears to be lacking in the binary 
representation of possible transitions is the normal· 
ization possible with probabilities that expresses 
that the automaton is actually in one, and only ODe, 

state. The Dormalization of the colulIlDs of Table 1 
is appropriate to a Don-deterministic automaton 
(section 2.6) in that at least one of the states has the 
value I, but there is also tbe auxiliary rule that if 
only one of the states has the value I then the 
automaton is definitely in that state. 

It is in the form of this auxiliary rule that the 
weakness of expressing possibility in a finite­
valued logic seems to lie. To find out if the auto­
maton is definitely in a state we bave to examine the 
possibilities of all other states and show tbat they 
are zero. This global argument contrasts sharply 
with the local reasoning in the probabilistic case 
that the automaton is definitely iD a state because 
the probability of that state is 1. There seems no 
reason, however, why we should not retain this 
"conservation law" so readily expressed in prob­
abilities without giving the actual numeric prob­
abilities anything more than a possibilistic inter­
pretation, i.e.:-

(DI) p(E) = 0 E is impossible 

(D2) 0 < p(E) ~ 1 E is possible 

(D3) p(E) = 1 E is necessary 

A calculus of possibility based on these definitions 
is quite simply developed and in fact gives non­
deterministic automata the structure of probabilistic 
automata with the weakened semantics that, apart 
from 0 and I, the values of "probability" have no 
greater significance than that an event is possible. 

A formal proof that a probability logic may be 
used as a proper basis for a logic of possibility has 
been given by Rescber l1 (see Ref. 20, section 28.2). 
He introduces modalities into the PL of section 2.9 
by the stipulations: 

(PS) Necessity: LA = I or 0 a~ording as 
P(A') is, or is not, uniformly I for every 
substitution instance, A', of A. 

(P9) Possibility: MA = 0 or 1 according as 
peA' ) is, or is not, uniformly 0 for every 
substitution instance, A', of A. 

The use of the concept of substitution instances is 
necessary because tbe logic is not itself truth­
functional. Rescber37 has demonstrated that the 
logic witb these modalities is characteristic of 
Lcwis' system SS of modaJlogic ll in that its tauto­
logies are precisely tbose of SS, and vice versa. 
Thus, wh.ilst there is no 1i.nite·valued logic that 
represents precisely the alethic model logic of 
necessity and possibility, this (infinite-valued) 
"probability logic" does so. 

lf we consider only mutually exclusive events, 
such as an automaton being in one or another of its 
states, then it may be seen from. P3 that the logic ' 
becomes truth-functional, Valuations are then just 
additive over the disjunction of events. Hence also 
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P9 may be inttrprtted as, "an event is possible if 
and only if its valuation i s  nan-ztro", which may 
be seen as a binary evaluation similar to the O/l 
representation of impossibilitylpossible in aon- 
deterministic: automata. However we also have the 
new rule baed on P8 that, "an cvtnt is nmssary if 
its valuation is unity". This cormponds to our 
previous additional rule that if the disjunction of a 
set of mutually exclusive events is nmssary, and 
only onc o l  the tvtnts is possible, then that event 
must bt nmssary. f his is now derivable from the 
purely arithmetic effcct of the additivity of positive 
valuations, i,e. if the sum of a set of numbers is 1, 
and all but onc of those numbers i s  zero, then that 
number must be 1. 

It is interesting to compare this with the cor- 
responding r u l e  of the modal logic S5 (723 in RcT. 
31, p. S l )  that: 

L(A v B) 1, (LA v MB) 

which clearly extends to multiple tvtnts: 

i.e. if it is necessary that at least one of a set OF 
events =cur then either one of the events is 
necessary or some of the others art possible. Hence, 
from the impossibility of all but one event y e  can 
infer the necessity for that event. I t  can be seen that 
what the 'probability logic" of SS docs is replace 
a prtxxss of logical deduction wilh one of arithme- 
tic. The failure of a binary rtprtsentation of 
possibility to do this may itself be sen as a demon- 
stration of the impossibility of characterizing S5 
with n finite-valued 10gic.~' 
Thus a c o m t  m d c f  of the behaviour of a 

possibilistic automaton may bt baxd on what is 
effectively a probabilistic automaton with the 
weakened interpretation of "probabiliticz~" giwn 
by Dl  through 03. A re-andysis of the automaton 
of Figure I using this interpretation shows that the 
difference ktween states 52 and S3 that was 
previously obscured is now apparent. Table V is 
the new version of Tablt W. To show the generality 
of rhc result symbols have bnn  used rather than 
numb- and b arc any numbers in the open 
intervnl, (0, 1). T h e  final column gives the sums of 
the cltmtnts in each row. For SO through S3, since 
the automaton being, for example, in $2 st time 1 
and at time 2 are mutually txclusivc posibilizits, 
the sum properly rtprescnts the total possibility of 
the automaton k i n g  in the state. It can be sten 
that $1 and S3 are only possibly entered but that 
S2, for which the total is 1, wE11 be necessarily 

entered. The sums For S4 and S5 are not meaningful 
because the loops in the state d i a p r n  rule out 
mutual exclusion and hence the additivity of 
possi bilitics. 

The penultimate column of Table V shows the 
final possibility of the automaton being in each of 
its states. Whilst that for S4 is asymptotic to 0 and 
that for S5 is asymptotic to 1, both are csstntialIy 

TABLE V 
PL Form of nondettrministic h y p s t a t u  

T i m  0 1 2 3 4 Final Tml 

non-zero for all time and hence, if the transitions 
art possibiIistic. the most we can say is that both 
states arc ultimately possible. This serves to illus- 
Itrate an essential distinction between the analysis 
of possible and eventual behaviour since, i f  the 
transitions arc eventual, we may showa9 that an 
asymptotic approach of the possibility of an event 
to unity indicates that that event must ultimately 
necessarily occur. 

This b o a  has demonstrated the role of an 
nppropriatc interpretation of PL as a full logic of 
possibility that allows all, and only, those con- 
clusions to k drawn about the behariour of a 
passibilistic system that ate justified by its seman- 
tics. ~aincs' '  has also @ven a suitable inter- 
pretation for PL to be a full logic of cvtntualjstic 
systems as noted in the last paragraph. Thus again, 
as noted in s ~ t i o n  2.9, tht probabilistic automaton 
m d t l  w m s  to have a central role in system 
mmlclling in that it subsumes all others. However, 
whilst a Pk b a d  on scalar probabilities in the 
interval [O, 11 is an adquate basis for any one of 
the t h m  logics of possibility, eventuality and 
probability, it is inadquate to account for tbr 
behaviour of mixed systems iavatving any two, or 
all three, trpcs of event. It can bt shown that a 
veeror probabiIity'g is bath nmssary and sufficicnr 
ta account far the khaviour of such systems. with 
e~ being convmtionat vcctor addition but o king a 
rather strange form of vcctor "'multiplication". 
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P9 may be interpreted as, "an event is possible if 
and only if its valuation is non-zero", which may 
be seen as a binary evaluatjon similar to the 0/1 
representation of impossibility/possible in non­
detenninistic automata. However we also have the 
new rule based on PS that, "an event is necessary if 
its valuation is unity". This corresponds to our 
previous additional rule that if the disjunction of a 
set of mutually exclusive events is necessary, and 
only one of the events is possible, then that event 
must be necessary. This is now derivable from the 
purely arithmetic effect of the additivity of positive 
valuations, i.e. if the sum of a set of numbers is I, 
and all but one of those numbers is zero, then that 
number must be I. 

It is interesting to compare this with the cor­
responding rule of the modal logic SS (TlS in Ref. 
31,p. SI)that: 

L{A v 8) :::l (LA v M B) 

which clearly extends to multiple events: 

L{A v B v Cv ... ) :::l (LA v MS v MC v .. . ) 

i.e. if it is necessary that at least one of a set of 
events occur then either one of the events is 
necessary or some of the others are possible. Hence, 
from the impossibility of all but one event we can 
infer the necessity for that event. It can be se'en tbat 
what the 'probability logic" of SS does is replace 
a process of logical deduction with one of arithme- ' 
tic. The failure of a binary representation of 
possibility to do this may itself be seen as a demon­
stration of the impossibility of cbaracterizing SS 
with a finite-valued logic. 3t 

Thus a correct model of tbe bebaviour of a 
possibilistic automaton may be based on what is 
effet:tively a probabilistic automaton with the 
weakened interpretation of "probabilities" given 
by DI through D3. A re-analysis of the automaton 
of Figure 1 using tbis interpretation shows that the 
difference between states S2 aDd S3 that was 
previously obscured is now apparent. Table V is 
the new version of Table IV. To show the generality 
of the result symbols bave been used rather tban 
numbers-a and b are any numbers in the open 
interval, (0, I). The final column gives the sums of 
the elements in eacb row. For SO through S3, since 
the automaton being, for eltample, in S2 at time 1 
and at time 2 are mutually exclusive possibilities, 
the sum properly represents tbe total possibility of 
the automaton being in the state. It can be seen 
that SI and S3 are only possibly entered but that 
S2, for which the total is I, will be necessarily 

eotered. The sums for S4 and S5 are not meaningful 
becau~ the loops in the state diagram rule out 
mutual exclusion and hence the addhivity of 
possibilities. 

Tbe penultimate column of Table V shows the 
fioal possibility of the automaton being in each of 
its states. Whilst that for S4 is asymptotic to 0 and 
that for S5 is asymptotic to I, both are essentially 

TABLE V 
Pt Form of nondctcrministic hypcnlalcs 

Timc 0 2 3 4 Final Total 

SO 1 0 0 0 0 0 
SI 0 a 0 0 0 0 a 
S2 0 I-a a 0 0 0 1 
S3 0 0 b(I -0) IXJ 0 0 d 
S4 0 0 (l-b)( I-a) >0 >0 .... 0 
ss 0 0 0 >0 >0 -I 

Total I 

non-zero for all time and hence, if the transitions 
arc possibilistic, the most we can say is that both 
states are ultimately possible. This serves to iIIus· 
trate an essential distinction between the analysis 
of possible and eventual behaviour since, if tbe 
transitions are eventual, we may show 39 that an 
asymptotic approach of the possibility of an event 
to unity indicates that that event must ultimately 
necessarily occur. 

This section has demonstrated the role of an 
appropriate interpretation of PL as a full logic of 
possibility that allows all, and only, tbose coo­
clusions to be drawn about the bebaviour of a 
possibilistic system that are justified by its seman­
tics. Gaines H ba.s also given a suitable inter­
pretation for PL to be a full logic of eventualistic 
systems as Doted in the last paragraph. Thus agrun, 
as noted in section 2.9, the probabilistic automaton 
model seems to have a central role in system 
modelling in tbat it subsumes all others. However, 
whilst a PL based on scalar probabilities in the 
interval [0, I] is an adequate basis for any ooe of 
the tbree logics of possibility, eventuality and 
probability, it is ioadequate to account for the 
behaviour of mixed systems involving any two, or 
all three, types of event. It can be shown that a 
rJecto, probabi!ity)9 is both necessary and sufficient 
to account for the behaviour of such systems, with 
Ell being conventional vector addition but 0 being a 
rather strange fonn of vector "multiplication". 
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Howtvtr, within the main terns of reference of this 
paper, the discussion of this section has served  to 
indicate that the conventional spectrum of auiomata 
malystd in section 2 is not adequate to provide 
models for all systems of practical interest. The 
following section revems the approach and con- 
sidets the most general form possible for an autw 
maton. 

4. THE GENERAL CASE 

la this section w t  shall draw on the arguments and 
examples of sections 2 and 3 so develop the most 
gcncrnl form of automaton structure that i s  con- 
sistent with the notions of state, and statedeter- 
mined. Thc final part of the scction is conmrned 
with the other general theoretical questions such as 
topological models of automata and the role of 
inputs and outputs. 

4.1 Semirings 

We have noted in section 3.3 that the truth-set 
atcd not be a fuay set or a distributive lattict, and 
that the elements need not be idempoknts under 
8 or o. In the sxample of the prcvious section it 
can be wen that @ and o are both associative and 
cornmultative and that 0 distributes over a, i.c. 
together they girc the truth sct the structure of a 
commutative semiring. It is also apparent that this 
stmiring is ,positive'u (p. 125) in that if we eon- 
sider the zero clement (1 in tsblts El and HI) Ithen: 

a b b = I + a = I = b  (19) 

and : 
a o b r l - , a = I o r b u I  (20) 

The example of section 3.3 shows that a strpngr 
stmctur t  would bt too restrictive. Howtvtr, the 
question remains of whether a positive Commuta- 
tive stmiring is stilt too strong a structurc on which 
to base automata theory. The hollowing notes 
outline arguments to show an fundarnend, and 
intuitively satisfying, grounds that at lcast an 
ordered semi ring is necessary, 

First consider the operator, @, which reprrscnts 
the combina~on of different trajectories to the 
same state. TrajmorEes may be combined in pairs 
so that this gives she truth set the structure of a 
partial goupoid (partial beeawe somc pairs of 
values may nor arise and htncc their result is 
undefined, t.g. probabilities of 1 and 13. Howcwr, 

we must also take into account the independence or 
trajectories, than they represent alternative paths 
and there should be no effect of order or grouping 
when combining them. This implies that e is 
amssarily commutative and assdative, and 
benct d c h t s  a partial commultative semigroup over 
the truth set (it may be taken as a partial monoid 
by adding the null trajectory as an identity element). 
We may drop the term "partial" in general by 
noting that thc "don't care" conditions can always 
be fitted in to romplctc the monoid. 

Even these constraints do no6 fully represent the 
necessary structure since each trajectory termina- 
tion in a stare can only add to our knowledge about 
the automaton king i n  that state. Thcre can be no 
cancellation of information obtained by consider- 
ing independent trajectories, One possible expres. 
$ion or this is to require the monoid to h positive, 
so that: 

where 0 is the identity element of the monoid 
wriaen additiveiy. It can readily &seen (by adding 
a or b to tach side of the left quation o l  14) that 
if the t!ements of the monoid arc idempotent 
Eq. (14) automatically holds. Idempotency also 
implies the natural order on she monoid is a semi- 
lattice. That is defining a relation, 2,  on Y in terms 
o l e :  

Unfortunately the positivity condition of Eq. (21) 
alodt docs not guaranltec hat  this is tvm a pa*al 
order, and it secms that the k t  statement of the 
constraint upan the monoid is that the natural pre- 
ardtr on it defined by Eq. (22) is actually a partial 
order. This itself impliw that the monoid is 
positive and is implied if the elements are idempo- 
tent. Intuitively, this order relation corrcspands to 
our having two independent sources of information 
about a statc which cannot canceI-taken together 
they must give at lcasa as much information as 
tither nlont. 

The optrator o presents mom intemting prob 
]ems sislcc it represents the interaction ktwccn 
states and transitions, and there is no a priori 
reason to suppox that they a n  be txprcssed in the 
snmt language. Let us start w i h  the more gcncral 
assumption that the transitions are drawn from a 
set of functions, F = I/: V -, v. Considering the 
samc argument as for @, it can be seen that the 
result of appIying a function to each individual 
trajectory separatdy (and then combining them) 
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However, within the main terms of reference of this 
paper, the discussion of this section has served to 
indicate that the conventional spectrum ofautom.ata 
analysed in section 2 is not adequate to provide 
models for all systems of practical interest. The 
following section reverses the approach and con­
siders the most general form possible for an auto­
maton. 

4. THE GENERAL CASE 

in this section we shall draw on the arguments and 
examples of sections 2 and 3 to develop the most 
general fonn of automaton structure that is con­
sistent with the notions of state, and state-deter­
mined. The final part of the section is concerned 
with the other general theoretical questions such as 
topological models of automata and the role of 
inputs and outputs . . 

4.J Semirings 

We have not.ed in section 3.3 that the truth-set 
need not be a fuzzy set or a distributive lattice, and 
that the elements need not be idempotents ullder 
E& or 0 . In the example of the previous section it 
can be seen that (9 and 0 are both associative and 
commutative and that (;) distributes over Ell, i.e. 
together they give the truth set the structure of a 
commutative serniring. It is also apparent that this 
semiring is .positive40 (p. 125) in that if we con­
sider the 2ero element (J in Tables II and lll) th.en: 

a(9b = I - a "" I = b (19) 

and: 

QG) b = / - a "'" I or b = / (20) 

The example of Sel;tioa 3.3 shows that a stronger 
structure would be too restrictive. However, the 
question remains of whether a positive commuta­
tive semiring is still too strong a structure on which 
to base automata theory. The foUowing notes 
outline arguments to show on fundamental, and 
intuitively satisfying, grounds that at least an 
ordered semiriog is necessary. 

First consider the operator, e, which represents 
the combination of differeat trajectories to the 
same state. Trajectories may be combined in pairs 
so that this gives the truth set the structure of a 
partial groupoid (partial because some pairs of 
values may not arise and hence their result is 
undefined, e.g. probabilities of I and I). However, 

we must also take into account the independence or 
trajectories, that they represent alternative paths 
and there should be no effect of order or grouping 
when combining them. This implies that e is 
necessarily commutative and associative, and 
hence defines a partial commutative semigroup over 
the truth set (it may be taken as a partial mODoid 
by adding the null trajectory as an identity element). 
We may drop the term "partial" in general by 
Doting that tbe "don't care" conditions can always 
be fitted in to complete the monoid. 

Even these constraints do not fully represent the 
necessary structure since each trajectory termina­
tion in a state can only add to our knowledge about 
the automaton being in that state. There can be no 
cancellation of information obtained by consider­
ing independent trajectories. One possible expres­
sion of this is to requ ire the monoid to be positive, 
so that: 

a, b E V, aG3b = 0 - a = 0 = b (2 1) 

where 0 is the identity element of the mono id 
written additively. It can readily be seen (by adding 
a or b to each side of the left equation of 14) that 
if the elements of the monoid are idempotenl 
Eq. (14) automatically holds. ldempotcncy also 
implies the natural order on the monoid is a semi­
lattice. That is defining a relation. !il;, on V in tenns 
ofe: 

a, b e V. a ~ b .... 3e:a = be e (22) 

Unfortunately the positivity condition of Eq. (21) 
alone does not guarantee that this is even a pa~al 
order, and it seems that the best statement of the 
constraint upon the monoid is that the natural pre­
order on it defm·ed by Eq. (22) is actually a partial 
order. This itself implies that the monoid is 
positive and is implied if the elements are idempo­
tent. Intuitively. this order relation corresponds to 
our having two independent sources of information 
about a state which cannot cancel-taken together 
they must give at least as much information as 
either alone. 

The operator 0 presents more interesting prob­
lems since it represents the interaction between 
states and transitions, and there is no a priori 
reason to suppose that they can be expressed in the 
same language. Let US start with the more general 
assumption that the transitions are drawn from a 
set of functions, F == if: V.., V}. Considering the 
same argument as for e, it can be seen that the 
result of. applying a function to each individual 
trajectory separately (and then combining them) 
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must be the same as applying It to them already 
combined-i,t, the functions must distribute over 
0: 

The implications OF distributivity are nor 
intuitively obvious and they may be expressed most 
meaningfully in terms of the odcr relation of 
Eq. (22), since Eq. (23) shows thazfmust be isotone 
with respect to 2 .  Again we may argue that a 
transition cannot in itself increase information 
about a start so that f must be iso~one non- 
i ncrtasing. 

The isotone non-increasing mapping over the 
truth set clearly form a semi-group which can bc 
extended to be a semiring by tht definitions: 

and : 

The partial order dcdned by Eq. (22) has a natural 
extension to Fin terns of Eq. ( 2 5 )  and this in turn 
implies that F under 9 and c is a positive scmlring. 

There are a number of possibtt monomorphisms 
injecting Vinto F, v: V + F, such that: 

and: 
4 b E V, p(a@b) = ~ ( 4 @ ~ 1 ( b )  (27) 

i.c. p imbeds V into the endomorphism semiing in 
such a way that the @ and o optrarors have a 
common intcrprcration in both structures. It is the 
existence of such imbeddings that enable us to use 
a common language to describe both hyperstates 
nnd their transitions. 

I t  will k noted that the txarnplcs given prcvi- 
ously art such that a is comrnuzativt whtrtas no 
informal arguments have k n  put forward here to 
suggest that this is true in general. It is easy enough 
to generate simple structures in which o is not 
cornmutarive but all our other rtquircmenrs are 
satisfied. We have yet to find a semantics for such 
structure to show that they art necessary. Con- 
versely there appears to be no argument on the lines 
ofthose advanced to suggest lhat such a semantics 
is not possible. 

4.1.1 Thc role ofidempotency If one accepts the 
informal arguments of the previous section in 
terms of the monoid over V representing "infoma- 

tion"' about the automaton k i n g  in a state then it 
would be natural to assume that its elmcnts were 
idempotcnts, i.e. that getting the "same" informa- 
tion a second time contributed nothing extra. Only 
the probabilistic case gives a countertxamplt, and 
hcrc the "ioformation" is a value rather than . a  
datum. 

Suppose however that instead of considering the 
probabilitits thtmseIvcs one considers 'the under- 
Iying Borcl set struaurc of the cr-algebra for the 
probabilities. Then 'the "information" consists of 
disjoint sub-sets whose measures correspond to the 
probabilitiesand if s is regarded as the union open- 
tian on the rubsets it is, of coutsc, idempotent. 

In this cssc our semiring kcomcs a lattice, as it 
was for all the non-probabilistic examples given. 
Thus it might well be lthat an intuitively satisfying 
axiornatization of automata theory could lead to 
the stronzer structure of a lattice, rather than a 
semiring, provihng oac i s  p r e p a d  to carry the 
full structure of a rneasutc algebra when carrying 
results over to probabilistic automata. 

This suggestion throws further light on the 
relationship bttwecn fuzzy and probabilistic auto- 
mata. The normalization conditions are tht ~ a m t  
in that the joins of the truth values for all the states 
should be units, but the fuzzy truth values must 
form a linearly-odesrd chain (a "vertical" section), 
whereas the probabilistic truth values must form a 
totally unorderd set (a "horisoatal" section] whose 
meets art zero. 

4.2 Topological Modelf of Logics and Automata 

The remarks of stxtion 4.1.1 suggest that one 
should examine topological models of automata 
rather than purely Iqical rncdels. There is of  course 
a close relationship ktween multivalud and m d l  
logics and general topologies4' lhat has been devel- 
oped as a powerful tool in logical s t ~ d i t s . ' ~ . * ~  For 
example, we may employ an AIOU-topology4' as a 
semantic model of the S4 modal logic.44 
Some more -cent results in automata theory 

indicate the way in which these relationships may 
bc further exploited. On the onc hand, we have 
theories using mtralanpages based o n  the pro- 
positional calculus (PC) for the synthesis and analy- 
sis of automata.*' with, on the other hand, various 
stmantic theories for a variety of types as analystd 
in this paper. In the k t  case we have a model LPC 
4 A u t  with statements about automata in Lpe, 
and with transitions and states as primitives in irs 
model Aut. In  the second case we have ,valuations 
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must be the same as applying it to them already 
combined-Le. the functions must distribute over 
0: 

f e F, a. be V,f(aeb) = (/a)m(fb) (23) 

The implications of distributivity are not 
intuitively obvious and they may be expressed more 
meaningfully in terms of the order relation of 
Eq. (22). since Eq. (23) shows that/must be isotone 
with respect to ~. Again we may argue that' a 
transition cannot in itself increase information 
about a state so that / must be isotone non­
increasing. 

The isotone non~increasing mappings over the 
truth set clearly form a semi~group which can be 
extended to be a semiring by the definitions: 

f, g. h e F, h = j.?g ...... a e V, ha = gfa (24) 

and: 

/. g. h E F. h = f eg ..... 

a E V, ha = /aega (25) 

The partial order defined by Eq. (22) has a natural 
extension to F in terms of Eq. (25) and this in turn 
implies that F under e and 0 is a positive serniring. 

There are a number of possible monomorphisms 
injecting Vinto F, p.: V-F. such that : 

a E V,Je F. p.(fa) = J1(a)o/ (26) 

and: 
a, b e V, J1(a$b) = p.(a)ep.(b) (27) 

i.e. J1 imbeds V into the endomorphism semiring in 
such a way that the $ and 0 operators have a 
commOn interpretation in both structures. It is the 
ex..istence of such imbeddings that enable us to use 
a common language to describe both hyperstates 
and their transitions. 

It will be Doted that the examples given previ­
ously are such tbat 0 is commutative whereas 00 

informal arguments have been put forward here to 
suggest that this is true in general. It is easy enough 
to generate simple structures in which 0 is not 
commutative but all our other requirements are 
satisfied. We have yet to find a semantics for such 
structure to show that they are necessary. Con­
versely there appears to be no argument on the lines 
of those advanced to suggest that such a semantics 
is not possible. 

4. J. J The role of idempotency If one accepts the 
informal arguments of the previous section in 
terms of the monoid over V representing "ioforma-

tion" about the automaton being in a state then it 
would be natural to assume that its elements were 
idempoteots. i.e. that getting the "same" informa~ 
tion a second time contributed nothing extra. Only 
the probabilislic case gives a counter-example, and 
bere the "information" is a value rather than .8 
datum. . 

Suppose however that instead of considering the 
probabilities themselves one considers the under­
lying Borel set structure of the q~algebra for the 
probabilities. Then ·the "information" consists of 
disjoint sub-sets whose measures correspond to the 
probabilities and if 9 is regarded as the union opera­
tion on the sub-sets it is, of course, idempotent. 

In this case our scmiring becomes a lattice, as it 
was for all the non-probabilistic examples given. 
Thus it might well be that an intuitively satisfying 
axiomatization of automata theory could lead to 
the stronger structure of a lattice, rather than a 
serniring, providing one is prepared to carry the 
full structure of a measure algebra when carrying 
results over to probabilistic automata. 

This suggestion throws further light on the 
relationship between fuzzy and probabilistic aut~ 
mata. The normalization conditions are the same 
in that the joins of the truth values for all the states 
should be units. but the fuzzy truth values must 
form a linearly-ordered chain (a "vertical" section), 
whereas the probabilistic truth values must form a 
totally unordered set (a "horizontal" section) whose 
meets are zero. 

4.2 Topological Models 0/ Logics and Automata 

The remarks of section 4.1.1 suggest that one 
should examine topological models of automata 
rather than purely logical models. There is of course 
a close relationship between multivalued and modal 
logics and general topologies"l that has been devel­
oped as a powerful tool in logical studies. "1 . 43 For 
example. we may employ an AIOU~t0f.0logy41 as a 
semantic model of the 54 modal logic. 4 

Some more recent results in automata th~ory 
indicate the way in which these relationships may 
be further exploited. On the one hand, we have 
theories using metalanguages based on the pro­
positional calculus (PC) for the synthesis and analy­
sis of automata,~' with. on the other band. various 
semantic theories for a variety of types as analysed 
in this paper. In the first case we have a model Lpc 
-Aut with statements about automata in Lpc, 
and with transitions and states as primitives in its 
model Aut. In the setond case we have .valuations 
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from Aut into V according to lthe given type of 
automata. These arc repmented diagrammatically 
in Fig. 2. All xatenm which are m e  in LMoe must 
be true in Aut and in V. In other words Aut has to 
k a model of LMOD, and V a model of Aut LPc has 
to k extended to a suitable m&l language LHOD. 
taking into account modalities such as possibility, 
tventuality and necessity. Formal proof ttchniqucs 
may be employed in this rtscareh as suggested by 
Snyder,'1 in a manner similar to that being 
devdoptd for the logic of protection." 

So far we have betn concerned with a suitable 
choice o f V  and with a valuation from Aut to V for 
simple automaton structurts. The appioach may be 
extended to include Iess orthadlox structum, s.g, 
Syst,, describing a particdar general systems 
theory.'' We may dm compare primitive tcms of 
various system theories, Syst,. Systb. c~c.,  For a 
particular valuation and to find a common/ragmenr 
of LMDDI and LMoW, giving the structure shown in 
Fig. 3. This may k regarded as deriving a formal 
analogy reIationd' ktwten the two systems. 

In ordtr to be abk to carry out such comparisons 
we have lto cnsurt that the middle part of the struc- 
ture (i.e. Syst or Aut) i s  txpresstd in topotogicd 
terms compatible with the semantics of modal 
lnnguages. We have Qrtady cmphasizcd4' the 
importance of g c n e r W  topologies for general 
svtms theories. It  can be show that the set of all 
subautomata of a given automaton forms an 

AIOW-topology. f hc accessibility of a subset of 
states may therefore bt iattrprttcd as possibility in 
S4 modal logic. Necessity corresponds to an 
interior in a given klOU-top~logy,*~ and reprc- 
scats the states which have to  be necessarily 
ace& from a subset. 

However, rh t  S4 system of m d a l  logic inter- 
preted in this way dots not make any distinction 
htwetn past and future. A clewr look at the 
NOU-topology of an auramaton shows that it 
contains a further structum which is that of an 
ordered topological spactm3" It is not therefore 
surprising to hnd that the temporal modal logics 
art fairly subtle refinements of an SQ system.'" 
Prior's work3' on such logics pays no ancation to 
automata or gencral systems theow as such and 
stems from the basic philosophical traditions of 
Diodor~s.~%owever, the open-minded reader will 
find that Prior's examples may be directly trans- 
lated into a fundamental discussian of stability, 
rtachability, controllability, etc. in automata and 
more general systems. and may some day Ix mog- 
nized as a major contribution to this field. 

This dcvclopmcnt in logic has k e n  garallclltd or 
prcrtdfd by work examining related ~opologic~l  
structures, but unfortunately rhcrc has been little 
linking between these two fields. A closer examina- 
tion of V-st& reveals that we can introduce top 
ologies into it in sevtrd &fferent ways, on two 
distinct pam of a V - x l .  For example, the AIOU- 
topology defining the set of all subautomata of a 
@yen automaton is given on the carrier S of the V- 
set. The operator 6 may or may not prcstrve the 
topological axioms which hold for S. It is obvious 
that c~nvtrgencc and limit points in generalid 
topologies" d c h d  on V will play an impoflaat 
role in determining those hyperstates which arc 
probabilistic. It appears that for general automata 
;mauses multiralued convergence structures may 
be ne~cssary.~~ 

Dewlopmeat of the theory of squentiar spaas 
aiming a t  more general mdt l s  of probability fields 
opens new pathways in this research. Ln -ion 
4.1.1 we have dready pointed out that axioms for 
automata structures may lead to a lattice if we arr 
willing to consider a-scts. A major contribution 
investigating the rtlationshp betwen measure 
theory and convergence s p a s  (in gcnenliscd 
topo[ogits) is the work of J. Novak (for refertnces 
scc 41, 54, 62), His m a r c h  on Lspaees*' aims at 
the investigation of basic notions of ptobabiIity," 
and an iatemting parallel with the developments 
in logic outlined above can be o'bsened. Norak 
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from Aut into V acco,rding to the given type of 
automata. Tbese are represented diagrammatically 
in Fig. 2. All sentences whicb are true in LMOD must 
be true in Aut aDd in V. In other words Aut has to 
be a model of LMOD, aad V a model of Aut. L,c has 
to be extended to a suitable modal language LMOD, 

taking into account modalities such as possibility, 
eventuality and necessity. Formal proof techniques 
may be employed in trus research as suggested by 
Snyder,l1 in a manner similar to that being 
developed for the logic of protection. 46 

{traaa1l10nD, 8ta~le 
aa ~r1m1l1VI ~Irmol 

FIGURE 2 Relation between models. 

So far we have been concerned with a suitable 
choice of V and with a valuation from Aut to V for 
simple automaton structures. The approach may be 
extended to iaclude less orthodox structures, e.g. 
S),st., describing a particular general systems 
theory.47 We may also compare primitive terms of 
various system ~beories, Syst.,. Systb, etc., for a 
particular valuation and to find a common fragment 
of LMODe and LMODlh giving the structure s~own in 
Fig. 3. This may be regarded as deriving a formal 
analogy relation 4 I betw«n the two systems. 

~ , Sy.t. 

/ ~ / ~ 
~,.lUmb • {'f,,} t v 

.~ / ~ / 
Iwmb t s,..tb 

FIGURE 3 Rcfation between systems. 

In order to be able to carry out such comparisons 
we have to ensure that the middle part of tbe st.ruc­
ture (i.e. Syst or Aut) is expressed in topological 
terms compatible with the semantics of modal 
languages. We have already emphasized41 the 
importance of generalized topologies for general 
sytems theories. It can be shown that the set of all 
sub-automata of a given automaton forms an 

AIOU-topology. The acceJsibility of a subset of 
states may therefore be interpreted as possibility in 
54 modal logic. Necessity corresponds to an 
interior in a given AlOU-topology,49 and repre­
sents the states which have to be necessarily 
accessed from a sub-set. 

However, the S4 system of modal logic inter· 
preted in this way does not make any distinction 
between past and future. A closer look at the 
AIOU-topology of an automaton sbows that it 
contains a further structure which is that of an 
ordered topological space. so It is not therefore 
surprising to find that the temporal modal logics 
are fairly subtle refinements of an 54 system." 
Prior's work H on such logics pays no attention to 
automata or gen.eral systems theory as such and 
stems from the basic philosopbical traditions of 
Diodorus. 51 However, the open-minded reader will 
find that Prior's examples may be directly trans· 
lated into a fundamental discussion of stability, 
reachability. controllability, etc. in automata and 
more general syst'ems, and may some day be recog­
nized as a major contribution to this field. 

This development in logic has been parallelled or 
preceded by work examining related lopologica/ 
structures, but unfortunately there has been little 
linking between these ~wo, fields . A closer examina­
tion of Y-setS reveals that we can introduc~ top­
ologies into it in several different ways, on 'wo 
distinct parts of a V-set. For example, thc AlOU­
topology defining the set of all subautomata of a 
given automaton is given on the carrier S of the Y­
set. The operator I> mayor may not preserve tbe 
topological axioms which hold for S. It is obvious 
that convergence and limit points in generalised 
topologies41 defined on V will play an important 
role in determinjng those hyperstates which are 
probabilistic. It appears tbat for general automata 
structUf'CS multi valued convergenc.e structures may 
be necessary. 'J 

Development of tbe theory of sequcntial spaces 
aiming at more generaJ models of probability fields 
opens new pathways in this research. In section 
4.1.1 we have already pointed out that woms for 
automata structures may lead to a lattice if we are 
willing to consider eT-sets. A major contributioll 
investigating the relationship between measure 
theory and convergence spaces (in generalised 
topologies) is the work of J. Novak (for references 
see 41, 54, 62). His research on L-spaces41 aims at 
the investigation of basic notions of probability," 
and an interesting parallel witb the developments 
in logic outlined. above can be observed. Novak 
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has, shown that ptobabilisic events do not have to 
be inttrprttd as subsets (as has beta done by 
Kolmogarov) or elements of Boolean 
However, it is tsentinl that they form an algebra 
which is also a L-space and that the probability is 
an additive continuous tuncdon in ~-to~ology.'' 
Related questions of the classification of functions 
measurable with respect to a particular o-algebra 
is considered in Ref, 58. In pnernl, development of 
the theory of seguenliui spaces, thcorics of  groups 
and aIgebras endowed with convergence and of the 
algebraic optration being continuous with respect 
to the convergence may play an increasingly 
important role in general systems and generaliscd 
automata research. A fundamtntal example of a 
sequential alge'bra is that of r h t  algebra of  substts 
OF n given set." The group opcmtion is the 
symmetric dire'esencc, rhc multiplication is the set 
inttre-ion and the convtrgencc stmcturt Is the 
set convergence of sets (i.e. d = lim A, .o 
Iim inf A, = lim sup Ad.  

"The genetalistd topologica! algebras discussed 
(with a toplogy defined wilh respect to the dge- 
bcaic operation) pose problems quite distinct from 
that given by traditional topoIogica1 groups, semi- 
groups and alpbras,  so that it is not possible ta use 
the txpcrience of traditional devcloprnents or that 
gained from the development of uniform spaces. 
This leads to new mathematical probIems which 
may k quite complex, Tor example, the case @'en 
in Figure 1 ,  showing non-additivity in the states 
54 and S5, would suggest that canoergemce semi- 
groups should be deve!opcd. 

The relationships betwtto languages, logics and 
topologies have k n  explored over many ycats, 
However, their impact on general systems theory 
has yet to come. Their impottance sterns to l i t  at 
that hdf-way h o w  between general mathematical 
formulations and particular practical applications 
where the semantics under consideration has itself 
a high degree of gtnenlity. 

4.3 The Roles of Inputs and Ourputs 

This paper has been primarily c o r n e d  with the 
semantics of hyperstates and their transitions, and 
the roles of inputs and oulputs, perally important 
topics in automata theory, have so far bctn Peg- 
lccttd bccausc neither plays a major role in deter- 
mining possibk automaton structum. Inputs may 
'be dtscribcd in t e r n  of a mapping from a set of 
possible inputs to that of legal transition fuudoas, 
and out puts may be described in tems OF a mapping 
C 

from the set of states (or the product of states and 
inputs) to the set of possible outputs. Howeverl there 
are aspccts of inputs and outputs that only become 
apparent within the f m c w o r k  of hypcsstate 
transitions devclaptd in this paper and arc not 
significant for conventional statedetermined 
machines. In this section we will: briefly d i m s  thc 
symmetry bttween inputs and outputs, and the 
possibility of rcpmenting a hyptrstatc tmnsfion 
function as due to a hypcrinput over normal statc 
transition Functions. 

In the basic definition of a statedenermined 
machine there appc3lrs to $e a fundamental asym- 
metry in the rolcs 06 inputs and outputs. The input 
function plays a major role in determining future 
bchaviour in that the NSF is determined by it.  
However, the output function is simply a mapping 
that loscs information about the state (we will 
assume a Moore mode! in which the current output 
i s  a function of the current state only), and since 
the statc itself is welldefincd by the previous statc 
and input this "loss'* is not a real one-the output 
function plays no rcaI role and is often assumed to 
bt an identity map. 

However, when the previous state, or the input, 
is uncertain, the next statc is not welldefincd by the 
NSF nnd the output coma to play s fat more 
important role. For example, if the output function 
is an identity mnp then even though the predicted 
next  "state" 'is a non-sharp hypcntate it becomcs 
sharp immediately the output is observed, Thus the 
output is no longer redundant and in this extreme 
case it may bt a d  to deternine the current stait 
whilst the previous state and hypetinput cannot do 
SO. 

In intermediate cases, where the output function 
is not information-lossIrss, both the previous .input 
and the current output are relevant to determining 
the transition from the previous to the current 
hyperstate. Thus, whilst the deterministic case leads 
one to regard the NSF as being a function of the 
input, in the other a w s  it is btst regarded as a 
function of the input-output pair. l b s  is exmpli- 
ficd in thc &finition of a system state and in the 
litcramre on system idmacation whcm a state is 
defined in tems o l  the relation bttwttn input-out- 
put segments and state identifiation consists or 
reducing a general hyperstate 20 a sharp hyperstate 
by considering the intervening input-output 
segment. 

Hence, in geaed system-theoretie terms, we 
mny segard the iaput-output pair as a datum ahut  
a systcrn, the inputcomponent of which is at our 
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has shown that probabilistic events do not have to 
be interpreted as subsets (as has been done by 
Kolmogorov) or elementS of Boolean algebra . .5 IS 

However, it is essential that they form an algebra 
which is also a L-space and that the probability is 
an additive continuous function in L-topology.5 7 

Related questions of the classification of functions 
measurable with respet:t to a particular O'-algebra 
is considered in Ref. 58. In general, development of 
the theory of sequential spaces. theories of groups 
and algebras endowed with convergence and of the 
algebraic operation being continuous with respect 
to the convergence may play an increasingly 
important role in general systems and generali~d 
automata research. A fundamental example of a 
sequential algebra is that of the algebra of subsets 
of a given set. 59 The group operation is the 
symmetric difference, the multiplication is the set 
interes«tion and the convergence structure is the 
set convergence of sets (i.e. A = lim A~ ~ 
lim inr All = Hm sup All)' 

The generalised topo)o:)gical algebras discussed ' 
(with a topology defined with respect to the alge­
braic operation) pose problems quite distinct from 
that given by traditional topological groups, semi­
groups and algebras, so that it is not possible to use 
the experience of traditional developments or that 
gained from the development of uniform spaces. 
This leads to new · mathematical problems which 
may be quite complex, for example, the case given 
in Figure I, showing non-additivity in the states 
S4 and SS. would suggest tbat convergence semi­
groups should be developed. 

The relationships between languages, logics and 
topologies have been explored over many years. 
However, their impact on general systems theory 
has yet to come. Their importance seems to lie at 
that half-way house between general mathematical 
formulations and particular practical a.pplications 
where the ~m:antics under consideration has itself 
a high degree of generality. 

4.3 The Roles of Inputs and Outputs 

This paper has been primarily concerned with the 
semantics of hypentates and their transitions, and 
the roles of inputs and outputs, generalJy important 
topics in automata tbeory, have so far been neg­
lected because neither plays a major role in deter· 
minio8 possible automaton structures. Inputs may 
be described iD terms of a mapping from a set of 
possible inputs to tbat of legal transition functions, 
and outputs may be described in terms of a mapping 

c 

from the set of states (or the product of states and 
inputs) to the set ofpossible outputs. However, tbere 
are aspects of inputs and outputs that only b«ome 
apparent within the framework of hyperstate 
transitions developed in this paper and are not 
significant for conventional state-determined 
machines. In this s«tion we will briefly discuss the 
synunetry between inputs and outputs, and the 
possibility of representing a hyperstate transition 
function as due to a hyperinput over normal state 
transition functions. 

In the basic definition of a state-determined 
machine there appears to be a fundamental asym­
metry in the roles of inputs and outputs. The input 
function plays a major role in determining future 
behaviour in that the NSF is determined by it. 
However, the output function is simply a mapping 
that loses information about the state (we will 
assume a Moore model in which the current output 
is a function of the current state only), and since 
the state itself is well-defined by the previous state 
and input this "loss" is not a real one-the output 
function plays no real role and is often assumed to 
be an identity map. 

However, when the previous state, or the input, 
is uncertain, the next state is not well~efined by the 
NSF and the output comes to play a far more 
importan,t role. For example, if the output function 
is an identity map then even though the predicted 
next "state" is a non·sharp hyperstate it becomes 
sharp immediately the output is observed. Thus the 
output is no longer redundant and in this extreme 
case it may be used to determine the current state 
whilst the previous state and hyperinput cannot do 
so. 

In intermediate cases, where the output function 
is not information-Iossless, both the previous .input 
and the current output are relevant to determining 
the transition from the previous to tbe current 
hyperstate. Thus, whilst the deterministic case leads 
One to regard the NSF as being Il function of the 
input, in the other cases it is best regarded as a 
function of the input-output pair. lllis is exempli­
fied in the definition of a system state and in the 
literature On system identification where a state is 
defined in terms of the relation between input-out­
put segments and state identification consists of 
reducing a general hyperstate to a sharp hyperstate 
by considering the intervening input-output 
scgxocnt. . . 

Hence, in gen,eraJ system-theoretic terms, we 
may regard the input-output pair as a datum about 
a system. the input-<:omponent of which is at our 



choice but the output-component of which is not 
and may only Ix determined through.obsctvation. 
This viewpoint confounds two components of an 
automaton structure which arc normally regarded 
PS quite distinct. Howevcr, this smearing of dis- 
tinctions is inherent in thc very generalization of the 
concept of an automaton tbat lead to the definition 
of a hyperstate since this itself confounds the 
structural propcrtics al  a statc-dctermintd machine 
nnd the uncertainty of an observcr about its exact 
states and inputs. 

It is interesting to demonstrate that this smearing 
is intrinsic and that no decision-procedure may 
distinguish between the NSF itself being non- 
deterministic and the NSF being completely 
deterministic but the input k ing imprecisely 
defined. This is readily sten if, for any state set S, 
we consider the family of all possible deterministic 
NSF's over Sand regard tach one as being selected 
by some particular input. Now any pasticular NSF 
may k decomposed by selecting the least non-zero 
element in its transition matrix and subtracting out 
an appropriate deqeminislic matrix whost corres- 
ponding input is weighted according to the value of 
the element (this can always be dome provided h e  
semiring i s  fully ordered). Rtptating this procedure 
until there are no residual non-zero elements gives 
the hy perinput corresponding to t h t  NSF. 

5 SUMMARY AND CONCLUSIONS 

The overall objective of this paptr has b n n  to 
rclate the formal mathematical uwts o l  automata 
theory to tbe basic semantics of the notions of  statc 
and state-determined systems, In particular wc 
have concentrated on the geaeralhtion of the 
concept of a statelinput-determined machine to 
that of a bypcrstatc/byperinput determined machine 
(section 2. I). 
We first explored the eonwntional s p 6 m  of 

dete~nistic~probabilisti~~fulzy~noa&tcrministic 
automata (sections 2,%2.6) and showed that these 
may be fitted into a single common framework with 
the same transition nnd normalization equations 
(mtion 2.7) but with the truth set king tither the 
closed unit intcrval or its trrd points, and the opcra- 
tion being either arithmetic dd/multiply or logical 
ORJAlM (section 2.8). An alternative iriacrpseta- 
tion of the normalization of fuzzy states was pro- 
p o d  (section 2.4.1), and the relationship 'bttw~cn 
f u q  and probabilistic automaw was shown to 
slcm from a common basis in probability logic 
(sections 2.8.1 and 2.9). 

We then went on to dtmonslratt that although 
thc conventional spectam of automata docs form 
a natvraI set, closed in some senst, it is inadquatc 
to provide models for various forms of uncertain 
systm bthaviour encountertd in studies of rcli- 
ability and stability (section 3.1). Pmxibie, menruul 
and probable events were defined (section 3.2) and 
a mixed continuouslhscrcte lode dcvdopcd for 
them that did not have the common properties of 
the logics of the automata already studied (wction 
3.3). It was also demonstrated that the conventional 
use of a two-valued logic for noadctcnninistic 
automata was inadequate to support cemin 
legitimate arguments about their bchaviout (section 
3.4), and it was shown that a modaliztd probability 
logic was adequate to do this (section 3.5). 

Finally, the most general formal structure Tor an 
automaton that is consistent with the notions af 
state and statcdczemination has been dcvelomd 
(section 4.1). This turns out to be a positive ordered 
semiring. Thc remaining subsections then explore 
some further questions raised in passing, that of the 
relationship between topological and modal logic 
models of automata (section 4.2) and the role of 
inputs and outputs in generalized automata 
(section 4.3). 
This has k n  an explozatory paper with the 

objective of developing a new approach to automata 
theory on firm semantic foundations rather than 
giving a complete formal m d t l  with the minimum 
OF justification. General systems theory emds an 
amoury of systcm ltypcs which may bc used as well- 
tried weapons to overcome new problems. It is 
vital that those weapons are wtII-understood both 
intuitively and mathematidly so tbat the p r ~ i s c  
impact of their powcrs and dcficieacics can be 
weighed in advance. Wt hope these notes have made 
some contribution to such an evaluation. 
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choice but the output-component of whicb is not 
and may only be determined through ·observation. 
This viewpoint confounds two components of an 
automaton structure which are normally regarded 
as quite distinct. However, this smearing of dis­
tinctions is inherent in the very generalization of the 
concept of an automaton that lead to the definition 
of a hyperstate since this itself confounds the 
structural properties of a state-determined machine 
and the uncertainty of an observer about its exact 
states and inputs. 

It is interesting to demonstrate that this smearing 
is intrinsic and that no decision-procedure may 
distinguish between the NSF itself being non­
deterministic and the NSF being completely 
deterministic but the input being imprecisely 
defined. This is readily seen if, for any state set S, 
we consider the family of all possible deterministic 
NSF's over S and regard each one as being sel~ted 
by so~e particular input. Now any particular NSF 
may be decomposed by sel~ting the least non-zero 
element in its transition matrix and subtracting out 
an appropriate deterministic matrix whose corres­
ponding input is weighted according to the value of 
the element (this can always be done provided the 
semiring is fully ordered). Repeating this procedure 
until there are no residual non-zero elements gives 
the hyperinput corresponding to the NSF. 

5 SUMMARY AND CONCLUSIONS 

The overall objective of this paper bas been to 
relate the formal mathematical aspects of automata 
theory to the basic semantics of the notions of state 
and state-determined systems. In particular we 
have concentrated on Ule generalization of the 
concept of a state/input-determined machine to 
that of a byperstate/byperinput determined machine 
(section 2.1). 

We first explored the conventional spectrum of 
determi nistic/ probabilistic / fuzzy /non-<ieterministic 
automata (sections 2.~2. 6) and showed that these 
may be fitted into a single common framework with 
the same transition and normalization equations 
(~tion 2.1) but with the truth set being either the 
closed unit interval or its end points, and the opera­
tion being either arithmetic add/multiply or logical 
OR/AND (s~tion 2.8). An alternative interpreta­
tion of the normalization of fuzzy states .was pro­
posed (s~tion 2.4.1), and the relationship betw~n 
fuzzy and probabilistic automata was shown to 
stem from a common basis in probability logic 
(sections 2.8.1 and 2.9). 

We then went on to demonstrate that although 
the conventional spectrum of automata does fonn 
a natural set, closed in some sense, it is inadequate 
to provide models for various fonns of uncertain 
system behaviour encountered in studies of reli­
ability and stability (section 3.1). POSSible, evenlual 
and probable events were defined (section 3.2) and 
a mixed continuous/discrete logic developed for 
them that did not have the common properties of 
the logics of the automata already studied (section 
3.3). It was also demonstrated that tbe conventional 
use of a two-valued logic for non-deterministic 
automata was inadequate to support certain 
legitimate arguments about their behaviour (section 
3.4), and it was shown that a modalized probability 
logic was adequate to do this (section 3.5). 

Finally, the most general formal structure for an 
automaton that is consistent with the notions of 
state and state-determination has been developed 
(section 4.1). This turns out to be a positive ordered 
semiring. The remaining sub-s~tions then explore 
some further questions raised in passing, that of the 
relationship between topological and modal logic 
models of automata (section 4.2) and tbe role of 
inputs and outputs in generalized automata 
(s~tion 4.3). 

This has been an exploratory paper with the 
obj~t.ive of developing a new approach to automata 
theory on firm semantic f9undations rather than 
giving a complete formal model with the minimum 
of justification. General systems theory needs an 
armoury of system types which may be used as well­
tried weapons to overcome new problems. it is 
vital that those weapons are well-unde~tood both 
intuitively and mathematically so tbat the pr~ise 
impact of tbeir powe~ and deficiencies can be 
weighed in advance. We hope these notes have made 
some contribution to such an evaluation. 

REFERENCES 

1. A. Turin" On computable numben, with an application 
to the entscheidunssproblem. Procttdin81 of IM lAlldon 
Malh'mIIllcm Soci"y. 41, SCf. 2.1936-7. pp. 22~26$. 

2. w. S. McCulloch and W. Pitts, A logical calculus of the 
idCll3 immanent in nervous activity. BU/fllm of MaIM­
mill/cm Biophysics. $,1943. pp. IIS-133. 

3. J. von Newnann. Theory of S,I/-R.prodJlcin8 Aulot1Ulla. 
University of Illinois Press. Urbana, 1966. 

4. N. Wlc:oc:r. CyiHrnllics. John Wiley. New York. 1948. 
5. L. von Bertalantry. An outline or general systems 

theory. Brilish 10Ul'M/lor Ih. Philosophy of Sci,nce. 1. 
No. 2. AuSUSt 19~. pp. 134-165. 



THE LOGIC OF AUTOMATA 207 

6. W. R. Ashby, Dtdgn /or a Brafn. Chapman m d  Hall. 
London. 1954. 

7. W. R. &hby, An Intdutr ion ra Cybrrmctia. Chapman 
and Hd1, London, 1956. 

8. A. W. Burks. Lopic, biology and automata-somt 
historial scfleetioru, fntcrnatiotml Ja~ltmI d MU* 
Machine Studier, 7, No. 3, May 1975, pp. 297-31 2. 

9. M. A. &bib, From automnta thtory la brain t h e w .  
ImternationaI IDWMI 6f Man- Machine Sf d i c s ,  I, NO. 3, 
May 1975. pp. 27%295. 

10, M. A. Arbib. Toleranm automata. Kybrmctlka (hagut), 
3.1957, pp. -233. 

11. L, A. Zadeh, F w  stts and sysrcrns. In: J. Fox Icd). 
System thcary, Microwave Ruearch Institute Symposia 
W w ,  vol. XV, Polytechnic Press, Brmklp, 1965, pp. 
29-37. 

12. E. S. Spntos and W. G. We, Gcnenl fwmulation or 
sequential machine. Infornturidn and Control, 6, No. 1 ,  
1968, pp. 5-10. 

13. L. A. Zadeh, The concept of state in system thewy. In: 
M. Mtsarovie (ed.), Vim$ on Gcncm! Sy~rcmr fhn,ry, 
John Wilty, New Ywk, 1964, pp. S % O .  

14. L. A. Zadch, The conmpts or system, a m t e  and 
state in system tbeoty. In: L. A. Zadch and E. Polak 
(eds), Sy~rcm Throry, McGmw HiEI, New York, 1969, 
pp. H Z .  

IS. J. A. Goguen. Concept rrpenta t ion  in natural and 
artificial l a n g u w :  axioms, rxtcnsions and applications 
for fuzzy xts. Inremartuna! JownaI of Mon-Machine 
StdFes, 6. No. 5. Septcmkr 1974, pp. 31 3-5.61. 

16. L. A. 2adeh. Fwzy SCU. In/ormotEon and Conrrol, 8, 
No. 3, June 1%5, pp. 338-353. 

17. L. A. Zadch, Outlint of a new apprcrach to the analpis 
of complex systems and decision p-. IEEE 
Transactiom on Sys~cm,  Mon and Cybtmefics, SMC-I * 
No. I ,  January 3973, pp. 2 8 4 4 .  

18. G. Lakofl, Hedgn: a study in meanfn~ critaia and the 
logic or fuxty mnapts. l u u r ~ l  aJ Phibmphical Logic, 5, 
1973, pp. 458-508. 

19. B. R. Gaincs. M u l t i v g l d  lea and f u ~ y  reasoning. 
In EESMMS-NU-74 ,  Dcpartmcnt of Elatriwl 
Eng inmin~  Sficna, Univmity of Essa, I975. 

20. N. R m h u ,  MmpYaIucd Loglc. MFGraw Hill, New 
York, 1969. 

21. P. Siy and C. S. a n ,  Fury logic fw M w r i t t e n  
num&al Ehamztct -tion. IEEE Tramuctionr on 
System, Man a d  Cybcnutics, SMC-4, No. 6, Novcm- 
btr 1974. pp. 57&575. 

22. J. C. Brrdck. Mumedal taxonomy with frrny sets. 
J O W ~  01 M ~ ~ k m ~ t l c o l  B~oIoB;~, 1,1974, pp. 57-71. 

23. E. H. Mamdaai and S. ikssjliaa. &I cnptrimcnt in 
linguistic w n W  wivith a r r y  lagic mntrolla. Inrtr* 
national J o d  of Mr~r-Machh Sdies, 7 ,  No. 1. 
January 1975, pp. 1-13. 

24. R. Uin& FW piafintr: reruaning with inexaa con- 
cept~ in a prdml problem-scrlving hguage. Journal 
of Cybemriu, 3* 1973, pp. 1-1 6. 

25. B. R. Gainn and L. Kohwt. The funy decade: a 
biobli-phy of Tw system and closely related 
topip. Inrcmnnflud I o w ~ l  of Mm+Machine S ~ d i c s ,  8, 
1976, to a p p r .  

26. W. G. We and K. S. Fu, A formulation of f q  aut* 
mta and its application as a model of I d n g  sysrems. 
IEEE T-cflonr on Syatemt, M a  mi C y k m t i ~ ~ ,  
SMC-5. July 1969, pp. 21S223. 

27. B. R. Gain=, Stochastic and A?ay 10gia. E I ~ f r ~ n i u  
Lcrrcrs, 11,1975, pp. 188-189, 

28. B. R. Ga'tnes, Memory minimaion in oonaol with 
stofh3stic automata. &fecrmniu Lrrters, 7, 1971, 
pp. 7 1 b f l  E. 

29. B. R. ta iuu ,  The mk at rand- in cybernetic 
Jflterns. h c n d h q #  of Cybrrrrcliu Sucle~y Conference 
on Rccmr Topics in Cybcmerics, London, Septembtr 
1974. 

M. E. M. Gold, Univasal gaal seek-. Idurmn~ion and 
Conrrol. 1% 197 I ,  gp. 395403. 

31. G. E. Hughn and M. J. Creswtll, An En#&tion to 
Mdd L o ~ l c ,  Methutn, London, 1968. 

32. D. P.  Snyder, Modal Logkc and I r x  Applicationr. Van 
Nwtrand, New York. 1971. 

33. B. R. G i n a  and t. Kohwt. Possible automata. 
R d i n g  of 1975 International Symposium on Multi- 
valued Logic, IEEE 7JCH095%7C, 1974, pp. 183-196. 

34. J. G. Brawn, A note on lwzy ets.  I n f o r m r i ~ n  and 
Cvntml. 18,1971. pp. 32-39. 

35. T. Fine, On the apparent eonwx@mcc of relative 
frequency and i ts  implieadom. EEE Trarunctiom on 
Wormarion Theom. IT-16,1970, pp. 251-257. 

36. T. L. FI nc, fhcorics of Probability, Audemic Resr, New 
York, 1973. 

37. H. Rtxber, A ptobabiliitic approach to modal logic. 
Act0 Philosophtca Sennica, 16,1963, pp, 21 S226, 

38. J. Bugundji. Note on a propeny of matricn for Wi 
and Lingford's cnlculi of propositions, Jour~ul of 
Symhl ie  LPgic, 5,1940, pp. 1%151. 

39. B. R. Gainn. A calculus at p i h i l i l y ,  matuality and 
probability. In: EES-MMS.FWZ-75. Dtpanment of 
E l h d  Enpinering Scienm Univmity of Eyy 1975. 

40. A. Eilcnk& Auromoto, l h g v l l g e ~  rmd  machine^, 001. 
A.  Amdcmic PKSS, New York. 1974. 

41. C. Kahout, Gtntraliztd ropotoan and thcir dma, , 
to g t n d  systems. h t # r ~ 2 ~ d  J o w d  of Genera/ 
Syfrcmr, 2, No. 1,1975, pp. -34. 

42. H. Rariawa and R. Sikonki, Tmt Markaut ics  of 
M e t ~ k e m t i u .  W-m, Poland, 1963. 

43. H. h i o w a .  An Algebraic Apprmch i o  NOU-C!PUI~M~ 
I p g r a .  N o ~ H u l h d .  Amstadam, 1974. 

44. J. C. C. M e K i m  and A. Tanki, Some t k m n s  about 
tht semantics1 dculi OB LCwig and Heyting. 3~wawl of 
S y h l i c  L q i c ,  13.1948, pp. 1-13. 

45. B. A. Trakhtcnbrot and Ya. M . ~ n , ~ n t t c A u ~ o m a t ~ ,  
hhauiow and Synrhe~ir. North-Holland, m a d a m ,  
1W3, 

46. L. Kohout and B. R. Gains Protection iu a pml 
~ t m  problem. I n r m r f o ~ f  J a m !  of G m d  Sys- 
renu, 3. 1976, to an-. 

47. G. Klu, An Appmmh to GeaaE Sysrrcmr Tfrmry. Van 
Nwmnd Rcinhold. Ntw Ymk, 1969. 

48, B. R. Gainu, Analw cetcgorin. vh-1~1 mncbjm md 
structured pr-ms. hocrrdinp of 5th h u a l  Con- 
g m s  of the Gc~llschft  fur Infomatik, Dumnund, 
Oaobtr 1975. 

49. E .  CKh. TopIo#tfd Spaces. Acadmia, Raguc; 
Wiky, I n d m c r .  Nm York, 1%. 

THE LOGIC OF AUTOMATA 207 

6. W. R. Ashby, Design for a Brain. Chapman and Hall , 
London, 1954. 

7. W. R. A&hby, An Introduction /0 CyMrMtics. Chapman 
and Hall, London, 1956. 

8. A. W. BurJcj, Logic, biology and automata~ome 
historical refteaioll$. In/ernalional Journal 0/ Mon­
MachineS/udles, 7, No. 3, May 1975, pp. 297-312. 

9. M. A. Arbib, From automata theory 10 brain theory. 
International JOWIIIlI of Man-Machine Studies, 7, No. 3, 
May 1975, pp. 279-29'. . 

]0. M. A. Arbib, Tolerance automata . KYMrneliko (Prague), 
3,1967,1'1'. 223-233. 

]]. L. A. Zadeh, Fuzzy sets and systems. In: J. Fox (cd), 
Syslem Theory, Microwave Research Institute Symposia 
Series, vol. XV, Polytechnic Press, Brooklyn, 1965, pp. 
29-37. . 

12. E. S. Santos and W. G . Wee, General formulation of 
sequential machines. In/ormalion and Conuol, 6, No. I , 
1968, pp. 5- 10. 

13. L. A. Zadeh, The concept of state in system theory. In : 
M. Mesarovic (cd.), Views on General Sysltmu Theory, 
lohn WHey. New York,1964, pp. 39-50. 

14. L. A. Zadeh, The concepts of system, aggrepte and 
slale in system theory. In : L. A. Zadch and E. Polak 
(cds), Syslem Theory, McGraw Hill, New York, 1969. 
1'1'.3-42. 

IS. J. A. Goguen, Concept representation in natural and 
artificial languages : ax ioms, e.lCtensioru and applications 
for fuzzy sets. Inftfnational Journal 0/ Man-Machine 
Studies, 6, No. 5, September 1974, pp. '13-561. 

16. L A. Zadeh, Fuzzy· scts. In/ormation and Conlrol, 8, 
No. 3, June 1965, pp. 338-353. 

17. L. A. Zadeh, Outline of a new approach to the analysis 
of complex SYSLe1TlS and decision prOCQSes. IEEE 
TransactiofU on Systems, Man and CybernttiCJ, SMC-l, 
No. J, January 1973, pp. 2s-44. 

18. G. LakofT, Hedges: a study in meaning criteria and Ihe 
logic oC Cuzzy conocpts. JOllr",,{ 0/ Philosophical Lo,lc, 2, 
1973, pp. 458-S08. 

19. B. R. OBines, Multivalu.cd logics and fuzzy reasoning. 
In E~MMS-FUZI-75, Department of Electrical 
EngiDeering Sdenoc, Uni~ty of Essex, 1975. 

20. N. Rcscher, MQlly-Yalwd Logic. McGraw Hill, New 
York,I969. 

21. P. Siy and C. S. CheD, Fuzzy logic for handwritten 
numerical character recosnition. IEEE TrQ/UQctlo/U 011 

SYSlt!ms, MO/f and Cybernetics, SMC4, No. 6, Novem­
ber 1974, pp. 570-575. 

22. J . C. Bezdck, NumeriC:31 taxonomy wilh fuzzy sets. 
JournoJ of Malhtmlltlc41 Blo/OIIY, I, 1974. pp. 57- 71. 

23. E. H. Mamdani and S. Assi1iao, A1J expcrimr.nt in 
linguistic synthesis with 11 Cuzzy losic cont.roller. Inter­
lIational JounuJI of Mon-Maclttn. Studies, 7, No. I, 
January 1975, pp. 1-13. 

24. R. Kling, Fuzzy planner: reasoning with inexact con­
cepu in a procedural problem-solvinglanguage. Journal 
a/Cybernetics, 3,1973, pp. 1-16. . 

25. B. R. Oalnes and L. Kohout, The fuzzy decade: a 
biobliography of fuzzy systems and closely ~Ialed 
topics. Inttnllttional JOldl101 of Man-Machint Studies, 8, 
1976, 10 appear. 

26. W. G. Wee and K. S. Fu, A Connulation of fuzzy auto­
mata and its application as a model of learrung sYSlems. 
IEEE rransoctfolU on Systems, MO/f 0JJd Cybernelics, 
SMC-5, July 1969, pp. 21S-223. 

27. B. R. Gaines, Slochastic and fuzzy logics. Electronics 
ut/ers, 11, 1975, pp. 188-189. 

28. B. R. Games, Memory minimization in control wich 
slochastic automata. Electronics Letters, 7, 1971, 
pp. 710-71 I. 

29. B. R. Gaines, The role oC randomness in cybernetic 
systems. Proceedings 0/ CyberMl/cs Soclely Con/erence 
on Rtctnl Topics in CYMmt!lics, London, September 
1974. 

30. E. M. Gold, Universal goal seckcn. Information and 
Control, 18, 1971, pp. 39S-403. 

31. G . E. Hughes and M. J. Creswell, An IntroduClion 10 

Modal Logic, Methuen, London, 1968. 
32. D . P. Snydcr, Modal Logic and lIS Applicalil)fu. Van 

Noslrand, New York,I971. 
33. B. R. Galna and L. KohoUl, Possible automata. 

Proceedings of 1975 International Symposium on Multi­
valued Logic,IEEE 7.5CH0959-7C, 1975, pp. 183-196. 

34. 1. G. Brown, A note on fuzzy sets. Information QIId 
Control, IS, 1971, pp. 32-39. 

35. T . Fine, On the apparent convergence of relative 
frequency and its implications. IEEE Tl'I1JlSactions on 
lnf'onnation Theory,1T-16, 1970, pp. 251- 257. 

36. T . L. Fine, Theori~s of Profxlbilily. Academic Press, New 
York,I973 . 

37. N. Rcscher, A probabilistic approach 10 modal logic. 
Acto Philosophlca Fennlca, 16, 1963, pp. 215-226. 

38. 1. Dugundji, Note on a propcny of matrices for Lewis 
and Langford's calculi of propositiolU. JOIUIIIlI 0/ 
Symbolic Logic, 5,1940, pp. ISO-IS!. 

39. B. R. Gaines, A calculus of pogibility, eventuality and 
probability. In : EES-MM5-FUZI-75, Dcparunent of 
Electrical Engineering Scienoc, Univrnlily of Essex, 1975. 

40. A. Eilenbcrg, Auromalo, LA1I8U48~J and MachineJ, 1101. 

A. Academic Press. New York, 1974. 
41. L. KohoUl, Generalized topologies and their relevance. 

10 general systems. Inlwrlllltiolllll JournoJ 0/ General .. 
Systems,l, No. I, 1975, pp. lS-J4. 

42. H. Rasiowa and R . Sikorski, TIre Mathematics 0/ 
MetamlJlMmJltia. WIIlUllWll., Poland, 1963. 

43. H. Rasiowa, An Algebraic Approo(/, to NOrl-Clwsical 
Logics. North-Holland, Amsterdam, 1974. 

44. J. C. C. McKin.sey and A. Tanki, Some Iheomns about 
the scmantical calculi of l.cwis and Hcyting. Jourlllll 0/ 
Symbolic Logic, 13, 1948, pp. I-IS. 

45. B. A. Trakhtmbrot and Ya. M. Bardzin, Finile Automllla, 
Bel!inJiour Q1I(} SynrhesiJ. Nonh-HoUand, Amsterdam, 
1973. 

46. L. Koboul and B. R. Galnes, Protection as a general 
systems problem. InterllOtiolllll JOllrllDi 0/ Gerltr41 Sys­
ttms.3, 1976,10 appear. 

47. G. K.lir, An Approach 10 GtflU41 SYJltms Theory. Van 
NosttaDd Reinhold, New York, 1969. 

43. B. R. GaiDes, AnaloJY categoric:3, virtual machioes and 
5tructured programs. ProceedilllP of 5th Annual Con­
gress of the· Gcsellsc:haft fur lnfonnatik, Dortmund, 
Octolxr 1975 . 

49. E. Cech, Topological SpaCfs. Academia, Prague ; 
Wiley, lntct"Scienoc, New York, 1966. 



208 B. R. GAINES A N D  L. J. KOHOUT 

50. E. k h ,  Toplwrrki Pru~tory. Academia, Prague, 1959, 
MR21-2962. 

51. A h o r .  PUJI, Prcsmr and FUIWC. flarendon Rtrs. 
Oxlord, 1967. 

52, B. Mat-, Didmean  impliarion. Phifumphical Rminu. 
SR, 1 W9, pp. 234-242. 

53. J. Noviik, On some problems umatning mul t iva ld  
conwrgmx.  C:tchoslmk Muthtmoritul JOIYMI, 11 
(R3), 19M, pp. 548-561. 

54. 9. Nov~k,  On c o n w p m  spam and their squtntial 
cnvelop. CzncJmrlow~k Marhemarlcu~ Jolrm~i,  15 (go), 
1M5, pp. 74-100. MR41-8572 

55. J. Sovik, Exttns~on fhtory or mnmgcnlx strunurn 
and i t s  npplintlon to probability thcoty .  In :  Conrn%u- 
tion to Errmnsiun nmry of Toplu~ical  Slructwr~ 
( Pr&n~s ef rhc Svmposi~m hell in Berlin. A q u r  
14-19. t 9 b f ) ,  edited by I. F E n c h m ~ r .  H. Poppt and 
F. ferpt. YEB Deutxhcr Vcrlag dcr W~mnschaftcn, 
k r h n ,  1969, p. 379. R39-h2hR. 

56. I. Havdk, On probnb~llty dtlintd on certain clasm oh 
non-Boolean a l v b n .  Nachrrchten dcr Sstrrreichix~hrn 
Mdrhcmrrr~schc Grxtll~chmfi, 23, NO. 91. 1968. pp. 89-W. 

57. J. Elodk, M. Novotn?. On the convergence tn a- 
nlgcbras or ptnr sets. C:~ch.vlorak ,tfo~hrmaricol 
Journal, 3 ( f R ) ,  1955. pp. 29 I-296. 

SR. J. Novtlk. On rhe classificl~lon of a(B).rnmmble 
funarong d&nd on an a h t m c ~  paint rct. Fdomcnro  
,Wnrhrmafira. 5O,l9hS, pp. 41341 8.  

59. J. Novkk, On some top log ia l  spaas reprexnttd by 
systems of a t s .  In  : Protecdmn~r of Infr rwr .  S y m p f i m  
OR T o p ~ l a ~ ~  a d  its Applrcalrons (Hmmg-N~v~ lW), 
Saw Drustrva Mat. FIZ. i Asrronom., k l p d c ,  1969. 
M R44-977. 

MI. J. NO*, On q m t i a l  m v e l m  d c h d  by m t a ~ u  of 
m a i n  c l w  of contlnuow bunaroru. C:tchrr~lm& 
Murhrmattcaljo-1, I8  @3), 1968, pp. 450-456. 

61. 5 .  Novrlk. On cofivcrgmct mp. C : c c h s l ~ ~ &  
Mafhemo~~caf Journal. 20 193, 1970. pp. 557-374. 
MR41-8572. 

61. 1. Novjk. On some problem ~ m i n g  convrrgcna 
spem and groupq. In: Gcnrml Topology andir~ Rrlaflon 
lo Modern Aflaiy~b a d  Af~chro (Promxlinp OF the 
Kanpur Topolosicnl Confcrcna ISM). tdithf hy 
J .  Nuvik, hi. kenkatanrnan and C. T. Wyburn. 
Acadernn, Pngue B Amdtm~c Rtu, New York, ls71. 
ZBC225.54003. 

63. J, Yavik. On completion of convergence comrnura~ivt 
groups. In : Genera! Tupolo~.v and irr Rrtariun ro ,Uudcm 
Analysir and Abcbra 3. (Procrrdinqs L F ~  (he Jhrrd 
Prorue Topoluprol Symprtum 1971). edited by J,  
Novbk. Academia. h g u c  dr Academic Prcn, Ncw 
York. 197 1,  pp. 335-340 

For Dr. Kohwuf 's bio~raphy.  srr Vol. 2 ,  KO. I ,  p 34 of r h r  
juvrnal. 

RRIAN R. GAINES WWI barn in Chtltmham, U.K.. on 
Octokr 25, IWO. In 1959 hc wm award4 e State Scholar- 
ship to study Mathcmstia ar Trinity College. Cambridge. 
and obraincd a B.A. dcgrre an 1963. He then took a mend 
A.A. derrrce In ~ h o l w g y .  and did ~ x a r r h  on the human 
adaprzvc contmllcr, mcrving his M.A. and Ph.D. from 
Carnbrtdge In 1967 and t 9722 m m i n l y .  

He wns apgointd Leeturn rn the k p a m m n t  of Elmrim! 
Engnccring Sficnce, U n i d t y  of Esscx. tram September 
196tn Senior Lrcturer in E %9, Rmda In 1931, and Chairman 
o l  tht Departmtnt in I975. He hns d& r nea r t h  con- 
trach w ~ t h  Iht Mrnistq of Kkt-. M~ntmy  of Te~hndogy. 
Department of Htalth and W a l  Sexmty, National 
Rescnreh and h l o p m t  Cwnal,  and various industrial 
b d ~ a  nnd h a  k n  comultant to mrPl indusfnal com- 
pnnlm. inctudlng LT.T. [19&71). Ptcucy. and George 
Kcnr. He hm also bctn a found- D i m o r  ol a number or 
cornpulin, a d  was TechnacnI Drmm of Qvute l  Ctd. from 
1969 to 1972. Hc ir tumntly a Director of  Micro Computer 
Svrtcml Ltd.. a computer rnanufactunn~ subud~an OF 

con~rol. HIS pnmt current -h intcrau, arc the Inter- 
ptay of compuzcr languages. operating q ~ t m s  and arck,:- 
tmurc, algtbra~c system thcory, and human racrorr In 
sy~tcms tngtnccring. 

Dr Gaines t s  a rnmk of the IEEE, the ACM. tht British 
Prycholomnl Sacrcty, and the Etpmmcntal Rycholcqy 
h e t y  

Krown Bami Kmr. ~ i h a 4  bem raponr ib l~ lar  a numdcr of 
comrnmial computer desims and holds some 15 pntcn~s on 
didti11 sptms. He 13 editor of the Inrmnarronal Joranal of 
M~~n-,Wnchinr Stdie3 and an u r n a t e  cdi tor OF the 1. F.A.C. 
journal. Aulomlicu. He is author of a m  30 tcthn~cal p a p m  
on topia including srochmtie computing. computer dcs~gn, 
human -tor studia, machlnc laming and adapttvt 

208 B. R. GAlNES AND L. J. KOHOUT 

50. E. ee<:h, Topol08icki Pr011ory. Acadcrnia. Prugu.c, 19.59, 
MR21-2962. ,I. A Prior. Pa.rt, PrlS~nr Qlfd FutuTt. C1nrendon Press, 
Oxford,1967. 

52. B. M tes, Diodorean implialllon. Philosophical R~iew, 
58. 1949, pp. 234-242. 

53. J. NoV11k, On some probletn.s eonccrnina multivalued 
converaenccs. CzeclroslotJaJc Mathematical JolV1flJJ, 14 
(89), 1964. pp. 548-561. 

54 . 1. NoV11k, On conver~ncc Sp;i.ces and their sequcnti I 
enveloPf:'. Cuchoslocak Marhtmalkal JourlfDl, IS (90), 
1965, pp. 74-100. MR41-8572. 

.55. 1. NovUk, Extcnsion theory of convergence structures 
and ics pplication 10 pro bili!)' theory. In; Conlribu­
tion to Extension T7rft}ry 0/ Topologfcal StructUJ' f!s 
(PrtKttdings of the Symposium held In .&rlin, August 
I 19, 1967). edited by 1. FI ehsmeycr. H. Pappc and 
F. Tcrpc. VEB DeuuchcT Vcrl 11 der Wissenschaften. 
Berlin, 1969, p. 279. M R39-6268. 

56. 1. NoV11k. On pro bility defined on cert in clnsses of 
non-Boolrnn algebrn. achrldflf!n der (Jslrrrtichi.schf!n 
Malhemali$che GuellJc/uifI, 23, o. 91, 1968. pp. 89- 90 . 

n . J. NovaJ<. M. NovotnY. On the convcrFn~ in (I. 

Illgebrus of POlOt SCU . C:ecno.slotak Mathematical 
Journal, J (7 ). 1953, pp. 291 - 296. 

58. J . ay le. On the classification of c1(B)-meamrnblc 
functions defined on nn bslMlct point ~t. Fundamt!ntQ 
Matlrematico. SO, 1962. pp. 41 HIS. 

BRJ R. GAl ES was born in Cheltenh;un, U.K., on 
October 25, 1940. In 19S9 he was awarded Stale Schol:l.(· 
ship to STUdy lalhemaucs at TrinitY College, Cambridge. 
and obwned B.A. dearee in 1963. He then took a second 
B.A. dcllRC iD PsycholollY. and did rexarcli OD thc human 
od ptiYe controller, ~vinl his M.A. and Ph.D. from 
Cambridge in 1967 .od 19n, respectively. 

He ppointed LcetuRr in the DcpllTlmeDt of Electrical 
Enllincering Science, Univeni!)' of Essex. from September 
1967, Sc:nior IA-turec in 1969, Reader in J971 and Chaimw.n 
of the Department In 1915. He bllS directed research cao­
tnlclll with the Ministry of Defence., Ministry of TccnoolollY, 
Department of Health aod Social Security, N lional 
Rcsea.rdl and Development CounQI, and YIlrious industrial 
bodies, and has been COnsullllDl to scv=aJ industrial corn­
pani io.cluding l T.T. (1964-71). Plessey, and George 
Kent. He ha.s also been a founder Director oC a number of 
compani and 'NU To:hnical OiRctar of Quatel Lld . from 
1969 to 1972. He is cusr-mlly a Director of Micro Computer 
SYSWnll Ltd .. 11 computer m nuIaetuting fUbsidiary of 
Brown Boveri Kenl. He h been responsible for number of 
commcn:;i I computer designs a.nd holds some 15 patentS on 
diiitll.l systCJrul. He jj editor of the IlItemo.twfUll Journal a/ 
M(J/I·Mo(hln, Stud/~ and an associate editor of the I.F.A.C. 
journal. AWorTIQlica. Hc is author of OVcT )0 technical papers 
on tOPIC! including 5Ioch.astic compulinll. computer design, 
human open.tor Jtudies, mac:hine learning ond daptive 

.59. J . ov!k, On some topoloii I spaces represented by 
systems of sets. [n: Prot:f!edilllS 0/ internat. SymposilLJ7l 
on Top%lY and il1 ApplialliofIJ (Hcrceg-Novi 1968). 
Save1: Drustnvn Mal. Fiz. I Astronom., Bdgrndl!, 1969. 
MR44-977. 

60. J. NoYll.k, OD sequential c:nvelope:s defined by means of 
certain c1ns.ses of continuous functiOlU, Cztchos/Qf)ak 
Mathematical Journal, 18 (93), 1968, pp. 450-456. 

61. J. NoVllk. On con~ arou ps , Cuc:hoslQoaJr. 
Mathematical Journal. 10 (95). 1970, pp. 3S7-374. 
MR41-8j72. 

62. J . ovsk, On some problems cona:ming convergence 
spaces and groups. (n : Gtfnual ToptJ1oIY and liS RtI/ation 
to Modern Analysu and Alkt.'bra (Procccdinp of the 
Kanpur TopolOllical Confcn:na: (968). edited by 
1. Nov!k, M . VcnkaLllnlman a.nd G. T . Wybum. 
Acadcmlll, Prague & Academic Press, e York. 1971. 
ZBL2:!S.54003. 

63. 1. ov:l.k. On completion of convergence commutal ive 
IIroups. In : Gtlnera{ TopolollY and its Re/atfon to Modun 
Analysis and AIgt!bra 3, (Procf!f!difl.is 0/ fht! Third 
Prague Tap%gical Symposium 1971), eQited by J. 
Novdk. Academia, Prui\.le & Academic PI"C:5S, c:w 
York. 1971. pp.llS-340. 

Far Dr. Kolrout's biography, Stlt! Vol . 2. o. I. P )4 o/this 
journal. 

control. His prime current rcscarch interestS Il(C the inter­
play of computer laniUlllICS. operating sySteITU and arch:­
tecture. algebraic system theory, and hum n r cton 10 

systems engineering. 
Or Gaines is member of the IEEE, the ACM, the British 

Psycholoiica.1 SOCIelY, and the Experimental PsycholOi'l 
Society. 




